914 resultados para Immortal Human-cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In somatic mammalian cells, homologous recombination is a rare event. To study the effects of chromosomal breaks on frequency of homologous recombination, site-specific endonucleases were introduced into human cells by electroporation. Cell lines with a partial duplication within the HPRT (hypoxanthine phosphoribosyltransferase) gene were created through gene targeting. Homologous intrachromosomal recombination between the repeated regions of the gene can reconstruct a functioning, wild-type gene. Treatment of these cells with the restriction endonuclease Xba I, which has a recognition site within the repeated region of HPRT homology, increased the frequency or homologous recombination bv more than 10-fold. Recombination frequency was similarly increased by treatment with the rare-cutting yeast endonuclease PI-Sce I when a cleavage site was placed within the repeated region of HPRT. In contrast, four restriction enzymes that cut at positions either outside of the repeated regions or between them produced no change in recombination frequency. The results suggest that homologous recombination between intrachromosomal repeats can be specifically initiated by a double-strand break occurring within regions of homology, consistent with the predictions of a model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Psoralen-conjugated triple-helix-forming oligonucleotides have been used to generate site-specific mutations within mammalian cells. To investigate factors influencing the efficiency of oligonucleotide-mediated gene targeting, the processing of third-strand-directed psoralen adducts was compared in normal and repair-deficient human cells. An unusually high mutation frequency and an altered mutation pattern were seen in xeroderma pigmentosum variant (XPV) cells compared with normal, xeroderma pigmentosum group A (XPA), and Fanconi anemia cells. In XPV, targeted mutations were produced in the supF reporter gene carried in a simian virus 40 vector at a frequency of 30%, 3-fold above that in normal or Fanconi anemia cells and 6-fold above that in XPA. The mutations generated by targeted psoralen crosslinks and monoadducts in the XPV cells formed a pattern distinct from that in the other three cell lines, with mutations occurring not just at the damaged site but also at adjacent base pairs. Hence, the XPV cells may have an abnormality in trans-lesion bypass synthesis during repair and/or replication, implicating a DNA polymerase or an accessory factor as a basis of the defect in XPV. These results may help to elucidate the repair deficiency in XPV, and they raise the possibility that genetic manipulation via triplex-targeted mutagenesis may be enhanced by modulation of the XPV-associated activity in normal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benzene is a ubitiquous human environment mental carcinogen. One of the major metabolites is hydroquinone, which is oxidized in vivo to give p-benzoquinone (p-BQ). Both metabolites are toxic to human cells. p-BQ reacts with DNA to form benzetheno adducts with deoxycytidine, deoxyadenosine, and deoxyguanosine. In this study we have synthesized the exocyclic compounds 3-hydroxy-3-N4-benzetheno-2'-deoxycytidine (p-BQ-dCyd) and 9-hydroxy-1,N6-benzetheno-2'-deoxyadenosine (p-BQ-dAdo), respectively, by reacting deoxycytidine and deoxyadenosine with p-BQ. These were converted to the phosphoamidites, which were then used to prepare site-specific oligonucleotides with either the p-BQ-dCyd or p-BQ-dAdo adduct (pbqC or pbqA in sequences) at two different defined positions. These oligonucleotides were efficiently nicked 5' to the adduct by partially purified HeLa cell extracts--the pbqC-containing oligomer more rapidly than the pbqA-containing oligomer. In contrast to the enzyme binding to derivatives produced by the vinyl chloride metabolite chloroacetaldehyde, the oligonucleotides up to 60-mer containing p-BQ adducts did not bind measurably to the same enzyme preparation in a gel retardation assay. Furthermore, there was no competition for the binding observed between oligonucleotides containing 1,N6-etheno A deoxyadenosine (1,N6-etheno-dAdo; epsilon A in sequences) and these oligomers containing either of the p-BQ adducts, even at 120-fold excess. When highly purified fast protein liquid chromatography (FPLC) enzyme fractions were obtained, there appeared to be two closely eluting nicking activities. One of these enzymes bound and cleaved the epsilon A-containing deoxyoligonucleotide. The other enzyme cleaved the pbqA- and pbqC-containing deoxyoligonucleotides. One additional unexpected fact was that bulk p-BQ-treated salmon sperm DNA did compete effectively with the epsilon A-containing oligonucleotide for protein binding. This raises the possibility that such DNA contains other, as-yet-uncharacterized adducts that are recognized by the same enzyme that recognizes the etheno adducts. In summary, we describe a previously undescribed human DNA repair activity, possibly a glycosylase, that excises from DNA pbqC and pbqA, exocyclic adducts resulting from reaction of deoxycytidine and deoxyadenosine with the benzene metabolite, p-BQ. This glycosylase activity is not identical to the one previously reported from this laboratory as excising the four etheno bases from DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coiled bodies (CBs) are nuclear organelles whose structures appear to be highly conserved in evolution. In rapidly cycling cells, they are typically located in the nucleoplasm but are often found in contact with the nucleolus. The CBs in human cells contain a unique protein, called p80-coilin. Studies on amphibian oocyte nuclei have revealed a protein within the "sphere" organelle that shares significant structural similarity to p80-coilin. Spheres and CBs are also highly enriched in small nuclear ribonucleoproteins and other RNA-processing components. We present evidence that, like spheres, CBs contain U7 small nuclear RNA (snRNA) and associate with specific chromosomal loci. Using biotinylated 2'-O-methyl oligonucleotides complementary to the 5' end of U7 snRNA and fluorescence in situ hybridization, we show that U7 is distributed throughout the nucleoplasm, excluding nucleoli, and is concentrated in CBs. Interestingly, we found that CBs often associate with subsets of the histone, U1, and U2 snRNA gene loci in interphase HeLa-ATCC and HEp-2 monolayer cells. However, in a strain of suspension-grown HeLa cells, called HeLa-JS1000, we found a much lower rate of association between CBs and snRNA genes. Possible roles for CBs in the metabolism of these various histone and snRNAs are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human urotensin-II (hU-II) is processed from its prohormone (ProhU-II) at putative cleavage sites for furin and serine proteases such as trypsin. Although proteolysis is required for biological activity, the endogenous urotensin-converting enzyme (UCE) has not been investigated. The aim of this study was to investigate UCE activity in cultured human cells and in blood, comparing activity with that of furin and trypsin. In a cell-free system, hU-II was detected by high-performance liquid chromatography-mass spectrometry after coincubating 10 muM carboxyl terminal fragment (CTF)-ProhU-II with recombinant furin (2 U/ml, 3 h, 37degreesC) at pH 7.0 and pH 8.5, but not at pH 5.0, or when the incubating medium was depleted of Ca2+ ions and supplemented with 2 mM EDTA at pH 7.0. hU-II was readily detected in the superperfusate of permeabilized epicardial mesothelial cells incubated with CTF-ProhU-II (3 h, 37degreesC), but it was only weakly detected in the superperfusate of intact cells. Conversion of CTF-ProhU-II to hU-II was attenuated in permeabilized cells using conditions found to inhibit furin activity. In a cell-free system, trypsin (0.05 mg/ml) cleaved CTF-ProhU-II to hU-II, and this was inhibited with 35 muM aprotinin. hU-II was detected in blood samples incubated with CTF-ProhU-II (3 h, 37degreesC), and this was also inhibited with aprotinin. The findings revealed an intracellular UCE in human epicardial mesothelial cells with furin-like activity. Aprotinin-sensitive UCE activity was detected in blood, suggesting that an endogenous serine protease such as trypsin may also contribute to proteolysis of hU-II prohormone, if the prohormone is secreted into the circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dapsone (DDS) hydroxylamine metabolites cause oxidative stress- linked adverse effects in patients, such as methemoglobin formation and DNA damage. This study evaluated the ameliorating effect of the antioxidant resveratrol (RSV) on DDS hydroxylamine (DDSNHOH) mediated toxicity in vitro using human erythrocytes and lymphocytes. The antioxidant mechanism was also studied using in-silico methods. In addition, RSV provided intracellular protection by inhibiting DNA damage in human lymphocytes induced by DDS-NHOH. However, whilst pretreatment with RSV (10-1000 μM significantly attenuated DDS-NHOH-induced methemoglobinemia, but it was not only significantly less effective than methylene blue (MET), but also post-treatment with RSV did not reverse methemoglobin formation, contrarily to that observed with MET. DDS-NHOH inhibited catalase (CAT) activity and reactive oxygen species (ROS) generation, but did not alter superoxide dismutase (SOD) activity in erythrocytes. Pretreatment with RSV did not alter these antioxidant enzymes activities in erythrocytes treated with DDS-NHOH. Theoretical calculations using density functional theory methods showed that DDS-NHOH has a pro-oxidant effect, whereas RSV and MET have antioxidant effect on ROS. The effect on methemoglobinemia reversion for MET was significantly higher than that of RSV. These data suggest that the pretreatment with resveratrol may decrease heme-iron oxidation and DNA damage through reduction of ROS generated in cells during DDS therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite of its known toxicity and potential to cause cancer, arsenic has been proven to be a very important tool for the treatment of various refractory neoplasms. One of the promising arsenic-containing chemotherapeutic agents in clinical trials is Darinaparsin (dimethylarsinous glutathione, DMA III(GS)). In order to understand its toxicity and therapeutic efficacy, the metabolism of Darinaparsin in human cancer cells was evaluated. With the aim of detecting all potential intermediates and final products of the biotransformation of Darinaparsin and other arsenicals, an analytical method employing high performance liquid chromatography inductively coupled mass spectrometry (HPLC-ICP-MS) was developed. This method was shown to be capable of separating and detecting fourteen human arsenic metabolites in one chromatographic run. The developed analytical technique was used to evaluate the metabolism of Darinaparsin in human cancer cells. The major metabolites of Darinaparsin were identified as dimethylarsinic acid (DMAV), DMA III(GS), and dimethylarsinothioyl glutathione (DMMTAV(GS)). Moreover, the method was employed to study the conditions and mechanisms of formation of thiol-containing arsenic metabolites from DMAIII(GS) and DMAV as the mechanisms of formation of these important As species were unknown. The arsenic sulfur compounds studied included but were not limited to the newly discovered human arsenic metabolite DMMTA V(GS) and the unusually highly toxic dimethylmonothioarsinic acid (DMMTAV). It was found that these species may form from hydrogen sulfide produced in enzymatic reactions or by utilizing the sulfur present in protein persulfides. Possible pathways of thiolated arsenical formation were proposed and supporting data for their existence provided. In addition to known mechanism of arsenic toxicity such as protein-binding and reactive oxygen formation, it was proposed that the utilization of thiols from protein persulfides during the formation of thiolated arsenicals may be an additional mechanism of toxicity. The toxicities of DMAV(GS), DMMTA V, and DMMTAV(GS) were evaluated in cancer cells, and the ability of these cells to take the compounds up were compared. When assessing the toxicity by exposing multiple myeloma cells to arsenicals externally, DMMTAV(GS) was much less toxic than DMAIII(GS) and DMMTAV, probably as a result of its very limited uptake (less than 10% and 16% of DMAIII(GS) and DMMTAV respectively).^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multi-tasking protein that acts in the cytoplasm and nucleus. We have explored the possibility that this protein is associated with telomeres and participates in their maintenance. Rat brain hnRNP A2 was shown to have two nucleic acid binding sites. In the presence of heparin one site binds single-stranded oligodeoxyribonucleotides irrespective of sequence but not the corresponding oligoribonucleotides. Both the hnRNP A2-binding cis-acting element for the cytoplasmic RNA trafficking element, A2RE, and the ssDNA telomere repeat match a consensus sequence for binding to a second sequence-specific site identified by mutational analysis. hnRNP A2 protected the telomeric repeat sequence, but not the complementary sequence, against DNase digestion: the glycine-rich domain was found to be necessary, but not sufficient, for protection. The N-terminal RRM (RNA recognition motif) and tandem RRMs of hnRNP A2 also bind the single-stranded, template-containing segment of telomerase RNA. hnRNP A2 colocalizes with telomeric chromatin in the subset of PML bodies that are a hallmark of ALT cells, reinforcing the evidence for hnRNPs having a role in telomere maintenance. Our results support a model in which hnRNP A2 acts as a molecular adapter between single-stranded telomeric repeats, or telomerase RNA, and another segment of ssDNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A human primary lung carcinoma cell line (HPL-R1) established from the tumor biopsy of a lung cancer patient, lacking in cytochrome P1-450 [aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH)], was cloned and used to obtain variants deficient in the expression of thymidine-kinase via treatment with 5-bromo-2'-deoxyuridine, and selection for drug resistance phenotype. The variant cell line, precharacterized for thymidine kinase negative phenotype, was transfected with the thymidine kinase gene bearing p R-tk and px1-tk plasmids. Transfections from both the plasmids, demonstrated a frequency of 5.5 X 10(-5). The transfectants showed a 76-100% retention of the transferred phenotype. These data suggest that transfection in variant human cells can approach significant levels of stability observed with rodent cell recipients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes (MWNTs) have been proposed for use in many applications and concerns about their potential effect on human health have led to the interest in understanding the interactions between MWNTs and human cells. One important technique is the visualisation of the intracellular distribution of MWNTs. We exposed human macrophage cells to unpurified MWNTs and found that a decrease in cell viability was correlated with uptake of MWNTs due to mainly necrosis. Cells treated with purified MWNTs and the main contaminant Fe(2)O(3) itself yielded toxicity only from the nanotubes and not from the Fe(2)O(3). We used 3-D dark-field scanning transmission electron microscopy (DF-STEM) tomography of freeze-dried whole cells as well as confocal and scanning electron microscopy (SEM) to image the cellular uptake and distribution of unpurified MWNTs. We observed that unpurified MWNTs entered the cell both actively and passively frequently inserting through the plasma membrane into the cytoplasm and the nucleus. These suggest that MWNTs may cause incomplete phagocytosis or mechanically pierce through the plasma membrane and result in oxidative stress and cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The malaria treatment recommended by the World Health Organization involves medicines derived from artemisinin, an active compound extracted from the plant Artemisia annua, and some of its derivatives, such as artesunate. Considering the lack of data regarding the genotoxic effects of these compounds in human cells, the objective of this study was to evaluate the cytotoxicity and genotoxicity, and expressions of the CASP3 and SOD1 genes in a cultured human hepatocellular liver carcinoma cell line (HepG2 cells) treated with artemisinin and artesunate. We tested concentrations of 2.5, 5, 7.5, 10, and 20 μg/mL of both substances with a resazurin cytotoxicity assay, and the concentrations used in the genotoxicity experiments (2.5, 5, and 10 μg/mL) and gene expression analysis (5 mg/mL) were determined. The results of the comet assay in cells treated with artemisinin and artesunate showed a significant dosedependent increase (P < 0.001) in the number of cells with DNA damage at all concentrations tested. However, the gene expression analysis revealed no significant change in expression of CASP3 or SOD1. Our data showed that although artemisinin and artesunate exhibited genotoxic effects in cultured HepG2 cells, they did not significantly alter expression of the CASP3 and SOD1 genes at the doses tested. ©FUNPEC-RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently reported that human fallopian tubes, which are discarded during surgical procedures of women submitted to sterilization or hysterectomies, are a rich source of human fallopian tube mesenchymal stromal cells (htMSCs). It has been previously shown that human mesenchymal stromal cells may be useful in enhancing the speed of bone regeneration. This prompted us to investigate whether htMSCs might be useful for the treatment of osteoporosis or other bone diseases, since they present a pronounced capacity for osteogenic differentiation in vitro. Based on this prior knowledge, our aim was to evaluate, in vivo, the osteogenic capacity of htMSCs to regenerate bone through an already described xenotransplantation model: nonimmunosuppressed (NIS) rats with cranial defects. htMSCs were obtained from five 30-50 years old healthy women and characterized by flow cytometry and for their multipotenciality in vitro capacity (osteogenic, chondrogenic and adipogenic differentiations). Two symmetric full-thickness cranial defects on each parietal region of seven NIS rats were performed. The left side (LS) of six animals was covered with CellCeram (Scaffdex)-a bioabsorbable ceramic composite scaffold that contains 60% hydroxyapatite and 40% beta-tricalciumphosphate-only, and the right side (RS) with the CellCeram and htMSCs (10(6) cells/scaffold). The animals were euthanized at 30, 60 and 90 days postoperatively and cranial tissue samples were taken for histological analysis. After 90 days we observed neobone formation in both sides. However, in animals euthanized 30 and 60 days after the procedure, a mature bone was observed only on the side with htMSCs. PCR and immunofluorescence analysis confirmed the presence of human DNA and thus that human cells were not rejected, which further supports the imunomodulatory property of htMSCs. In conclusion, htMSCs can be used successfully to enhance bone regeneration in vivo, opening a new field for future treatments of osteoporosis and bone reconstruction.