876 resultados para Image pre-processing
Resumo:
In den westlichen Industrieländern ist das Mammakarzinom der häufigste bösartige Tumor der Frau. Sein weltweiter Anteil an allen Krebserkrankungen der Frau beläuft sich auf etwa 21 %. Inzwischen ist jede neunte Frau bedroht, während ihres Lebens an Brustkrebs zu erkranken. Die alterstandardisierte Mortalitätrate liegt derzeit bei knapp 27 %.rnrnDas Mammakarzinom hat eine relative geringe Wachstumsrate. Die Existenz eines diagnostischen Verfahrens, mit dem alle Mammakarzinome unter 10 mm Durchmesser erkannt und entfernt werden, würden den Tod durch Brustkrebs praktisch beseitigen. Denn die 20-Jahres-Überlebungsrate bei Erkrankung durch initiale Karzinome der Größe 5 bis 10 mm liegt mit über 95 % sehr hoch.rnrnMit der Kontrastmittel gestützten Bildgebung durch die MRT steht eine relativ junge Untersuchungsmethode zur Verfügung, die sensitiv genug zur Erkennung von Karzinomen ab einer Größe von 3 mm Durchmesser ist. Die diagnostische Methodik ist jedoch komplex, fehleranfällig, erfordert eine lange Einarbeitungszeit und somit viel Erfahrung des Radiologen.rnrnEine Computer unterstützte Diagnosesoftware kann die Qualität einer solch komplexen Diagnose erhöhen oder zumindest den Prozess beschleunigen. Das Ziel dieser Arbeit ist die Entwicklung einer vollautomatischen Diagnose Software, die als Zweitmeinungssystem eingesetzt werden kann. Meines Wissens existiert eine solche komplette Software bis heute nicht.rnrnDie Software führt eine Kette von verschiedenen Bildverarbeitungsschritten aus, die dem Vorgehen des Radiologen nachgeahmt wurden. Als Ergebnis wird eine selbstständige Diagnose für jede gefundene Läsion erstellt: Zuerst eleminiert eine 3d Bildregistrierung Bewegungsartefakte als Vorverarbeitungsschritt, um die Bildqualität der nachfolgenden Verarbeitungsschritte zu verbessern. Jedes kontrastanreichernde Objekt wird durch eine regelbasierte Segmentierung mit adaptiven Schwellwerten detektiert. Durch die Berechnung kinetischer und morphologischer Merkmale werden die Eigenschaften der Kontrastmittelaufnahme, Form-, Rand- und Textureeigenschaften für jedes Objekt beschrieben. Abschließend werden basierend auf den erhobenen Featurevektor durch zwei trainierte neuronale Netze jedes Objekt in zusätzliche Funde oder in gut- oder bösartige Läsionen klassifiziert.rnrnDie Leistungsfähigkeit der Software wurde auf Bilddaten von 101 weiblichen Patientinnen getested, die 141 histologisch gesicherte Läsionen enthielten. Die Vorhersage der Gesundheit dieser Läsionen ergab eine Sensitivität von 88 % bei einer Spezifität von 72 %. Diese Werte sind den in der Literatur bekannten Vorhersagen von Expertenradiologen ähnlich. Die Vorhersagen enthielten durchschnittlich 2,5 zusätzliche bösartige Funde pro Patientin, die sich als falsch klassifizierte Artefakte herausstellten.rn
Resumo:
Statistical shape models (SSMs) have been used widely as a basis for segmenting and interpreting complex anatomical structures. The robustness of these models are sensitive to the registration procedures, i.e., establishment of a dense correspondence across a training data set. In this work, two SSMs based on the same training data set of scoliotic vertebrae, and registration procedures were compared. The first model was constructed based on the original binary masks without applying any image pre- and post-processing, and the second was obtained by means of a feature preserving smoothing method applied to the original training data set, followed by a standard rasterization algorithm. The accuracies of the correspondences were assessed quantitatively by means of the maximum of the mean minimum distance (MMMD) and Hausdorf distance (H(D)). Anatomical validity of the models were quantified by means of three different criteria, i.e., compactness, specificity, and model generalization ability. The objective of this study was to compare quasi-identical models based on standard metrics. Preliminary results suggest that the MMMD distance and eigenvalues are not sensitive metrics for evaluating the performance and robustness of SSMs.
Resumo:
Mittels generativer Fertigung ist es heute möglich die, Entwicklungszeit und Ferti-gungsdauer von Prototypen, Produkten und Werkzeugen zu verkürzen. Neben dieser Zeitersparnis sind die im Vergleich zu konventionellen Fertigungsverfahren unwe-sentlichen Geometriebeschränkungen für den Anwender von besonderem Interesse. Dieses Alleinstellungsmerkmal der generativen Fertigung macht es möglich auch komplexe Geometrie wirtschaftlich herzustellen. Voraussetzung für eine wirtschaftli-che und fehlerminimierte Fertigung ist hierbei eine möglichst optimale Prozessvorbe-reitung (Pre-Processing). Dabei sind insbesondere die Schritte der Bauteilorientie-rung, der Stützkonstruktionserzeugung, der Schichtzerlegung sowie der Bauraum-ausnutzung von Interesse. Auch wenn diese Punkte wesentlich zur Qualität und Wirtschaftlichkeit beitragen, sind die Erkenntnisse für den unerfahrenen Anwender nur unzureichend dokumentiert, wodurch eine möglichst effiziente Fertigung zu-nächst ausgeschlossen werden kann. Anhand unterschiedlicher Beispiele sollen dem Anwender hier die Möglichkeiten zur Optimierung dieser Pre-Processing Schritte er-läutert werden. In diesem Rahmen werden die aktuellen Forschungsergebnisse des Lehrstuhls Rechnereinsatz in der Konstruktion, Institut für Produkt Engineering der Universität Duisburg-Essen in Bezug auf die Optimierung der Bauteilorientierung, der variablen Schichtzerlegung und der Optimierung der Bauraumausnutzung vorgestellt.
Resumo:
When stereo images are captured under less than ideal conditions, there may be inconsistencies between the two images in brightness, contrast, blurring, etc. When stereo matching is performed between the images, these variations can greatly reduce the quality of the resulting depth map. In this paper we propose a method for correcting sharpness variations in stereo image pairs which is performed as a pre-processing step to stereo matching. Our method is based on scaling the 2D discrete cosine transform (DCT) coefficients of both images so that the two images have the same amount of energy in each of a set of frequency bands. Experiments show that applying the proposed correction method can greatly improve the disparity map quality when one image in a stereo pair is more blurred than the other.
Resumo:
A two-pronged approach for the automatic quantitation of multiple sclerosis (MS) lesions on magnetic resonance (MR) images has been developed. This method includes the design and use of a pulse sequence for improved lesion-to-tissue contrast (LTC) and seeks to identify and minimize the sources of false lesion classifications in segmented images. The new pulse sequence, referred to as AFFIRMATIVE (Attenuation of Fluid by Fast Inversion Recovery with MAgnetization Transfer Imaging with Variable Echoes), improves the LTC, relative to spin-echo images, by combining Fluid-Attenuated Inversion Recovery (FLAIR) and Magnetization Transfer Contrast (MTC). In addition to acquiring fast FLAIR/MTC images, the AFFIRMATIVE sequence simultaneously acquires fast spin-echo (FSE) images for spatial registration of images, which is necessary for accurate lesion quantitation. Flow has been found to be a primary source of false lesion classifications. Therefore, an imaging protocol and reconstruction methods are developed to generate "flow images" which depict both coherent (vascular) and incoherent (CSF) flow. An automatic technique is designed for the removal of extra-meningeal tissues, since these are known to be sources of false lesion classifications. A retrospective, three-dimensional (3D) registration algorithm is implemented to correct for patient movement which may have occurred between AFFIRMATIVE and flow imaging scans. Following application of these pre-processing steps, images are segmented into white matter, gray matter, cerebrospinal fluid, and MS lesions based on AFFIRMATIVE and flow images using an automatic algorithm. All algorithms are seamlessly integrated into a single MR image analysis software package. Lesion quantitation has been performed on images from 15 patient volunteers. The total processing time is less than two hours per patient on a SPARCstation 20. The automated nature of this approach should provide an objective means of monitoring the progression, stabilization, and/or regression of MS lesions in large-scale, multi-center clinical trials. ^
Resumo:
The spatial and temporal dynamics of seagrasses have been studied from the leaf to patch (100 m**2) scales. However, landscape scale (> 100 km**2) seagrass population dynamics are unresolved in seagrass ecology. Previous remote sensing approaches have lacked the temporal or spatial resolution, or ecologically appropriate mapping, to fully address this issue. This paper presents a robust, semi-automated object-based image analysis approach for mapping dominant seagrass species, percentage cover and above ground biomass using a time series of field data and coincident high spatial resolution satellite imagery. The study area was a 142 km**2 shallow, clear water seagrass habitat (the Eastern Banks, Moreton Bay, Australia). Nine data sets acquired between 2004 and 2013 were used to create seagrass species and percentage cover maps through the integration of seagrass photo transect field data, and atmospherically and geometrically corrected high spatial resolution satellite image data (WorldView-2, IKONOS and Quickbird-2) using an object based image analysis approach. Biomass maps were derived using empirical models trained with in-situ above ground biomass data per seagrass species. Maps and summary plots identified inter- and intra-annual variation of seagrass species composition, percentage cover level and above ground biomass. The methods provide a rigorous approach for field and image data collection and pre-processing, a semi-automated approach to extract seagrass species and cover maps and assess accuracy, and the subsequent empirical modelling of seagrass biomass. The resultant maps provide a fundamental data set for understanding landscape scale seagrass dynamics in a shallow water environment. Our findings provide proof of concept for the use of time-series analysis of remotely sensed seagrass products for use in seagrass ecology and management.
Resumo:
El presente trabajo describe una nueva metodología para la detección automática del espacio glotal de imágenes laríngeas tomadas a partir de 15 vídeos grabados por el servicio ORL del hospital Gregorio Marañón de Madrid con luz estroboscópica. El sistema desarrollado está basado en el modelo de contornos activos (snake). El algoritmo combina en el pre-procesado, algunas técnicas tradicionales (umbralización y filtro de mediana) con técnicas más sofisticadas tales como filtrado anisotrópico. De esta forma, se obtiene una imagen apropiada para el uso de las snakes. El valor escogido para el umbral es del 85% del pico máximo del histograma de la imagen; sobre este valor la información de los píxeles no es relevante. El filtro anisotrópico permite distinguir dos niveles de intensidad, uno es el fondo y el otro es la glotis. La inicialización se basa en obtener el módulo del campo GVF; de esta manera se asegura un proceso automático para la selección del contorno inicial. El rendimiento del algoritmo se valida usando los coeficientes de Pratt y se compara contra una segmentación realizada manualmente y otro método automático basado en la transformada de watershed. SUMMARY: The present work describes a new methodology for the automatic detection of the glottal space from laryngeal images taken from 15 videos recorded by the ENT service of the Gregorio Marañon Hospital in Madrid with videostroboscopic equipment. The system is based on active contour models (snakes). The algorithm combines for the pre-processing, some traditional techniques (thresholding and median filter) with more sophisticated techniques such as anisotropic filtering. In this way, we obtain an appropriate image for the use of snake. The value selected for the threshold is 85% of the maximum peak of the image histogram; over this point the information of the pixels is not relevant. The anisotropic filter permits to distinguish two intensity levels, one is the background and the other one is the glottis. The initialization is based on the obtained magnitude by GVF field; in this manner an automatic process for the initial contour selection will be assured. The performance of the algorithm is tested using the Pratt coefficient and compared against a manual segmentation and another automatic method based on the watershed transformation.
Resumo:
The present work describes a new methodology for the automatic detection of the glottal space from laryngeal images based on active contour models (snakes). In order to obtain an appropriate image for the use of snakes based techniques, the proposed algorithm combines a pre-processing stage including some traditional techniques (thresholding and median filter) with more sophisticated ones such as anisotropic filtering. The value selected for the thresholding was fixed to the 85% of the maximum peak of the image histogram, and the anisotropic filter permits to distinguish two intensity levels, one corresponding to the background and the other one to the foreground (glottis). The initialization carried out is based on the magnitude obtained using the Gradient Vector Flow field, ensuring an automatic process for the selection of the initial contour. The performance of the algorithm is tested using the Pratt coefficient and compared against a manual segmentation. The results obtained suggest that this method provided results comparable with other techniques such as the proposed in (Osma-Ruiz et al., 2008).
Resumo:
Remote sensing information from spaceborne and airborne platforms continues to provide valuable data for different environmental monitoring applications. In this sense, high spatial resolution im-agery is an important source of information for land cover mapping. For the processing of high spa-tial resolution images, the object-based methodology is one of the most commonly used strategies. However, conventional pixel-based methods, which only use spectral information for land cover classification, are inadequate for classifying this type of images. This research presents a method-ology to characterise Mediterranean land covers in high resolution aerial images by means of an object-oriented approach. It uses a self-calibrating multi-band region growing approach optimised by pre-processing the image with a bilateral filtering. The obtained results show promise in terms of both segmentation quality and computational efficiency.
Resumo:
Recent advances in non-destructive imaging techniques, such as X-ray computed tomography (CT), make it possible to analyse pore space features from the direct visualisation from soil structures. A quantitative characterisation of the three-dimensional solid-pore architecture is important to understand soil mechanics, as they relate to the control of biological, chemical, and physical processes across scales. This analysis technique therefore offers an opportunity to better interpret soil strata, as new and relevant information can be obtained. In this work, we propose an approach to automatically identify the pore structure of a set of 200-2D images that represent slices of an original 3D CT image of a soil sample, which can be accomplished through non-linear enhancement of the pixel grey levels and an image segmentation based on a PFCM (Possibilistic Fuzzy C-Means) algorithm. Once the solids and pore spaces have been identified, the set of 200-2D images is then used to reconstruct an approximation of the soil sample by projecting only the pore spaces. This reconstruction shows the structure of the soil and its pores, which become more bounded, less bounded, or unbounded with changes in depth. If the soil sample image quality is sufficiently favourable in terms of contrast, noise and sharpness, the pore identification is less complicated, and the PFCM clustering algorithm can be used without additional processing; otherwise, images require pre-processing before using this algorithm. Promising results were obtained with four soil samples, the first of which was used to show the algorithm validity and the additional three were used to demonstrate the robustness of our proposal. The methodology we present here can better detect the solid soil and pore spaces on CT images, enabling the generation of better 2D?3D representations of pore structures from segmented 2D images.
Resumo:
PAMELA (Phased Array Monitoring for Enhanced Life Assessment) SHMTM System is an integrated embedded ultrasonic guided waves based system consisting of several electronic devices and one system manager controller. The data collected by all PAMELA devices in the system must be transmitted to the controller, who will be responsible for carrying out the advanced signal processing to obtain SHM maps. PAMELA devices consist of hardware based on a Virtex 5 FPGA with a PowerPC 440 running an embedded Linux distribution. Therefore, PAMELA devices, in addition to the capability of performing tests and transmitting the collected data to the controller, have the capability of perform local data processing or pre-processing (reduction, normalization, pattern recognition, feature extraction, etc.). Local data processing decreases the data traffic over the network and allows CPU load of the external computer to be reduced. Even it is possible that PAMELA devices are running autonomously performing scheduled tests, and only communicates with the controller in case of detection of structural damages or when programmed. Each PAMELA device integrates a software management application (SMA) that allows to the developer downloading his own algorithm code and adding the new data processing algorithm to the device. The development of the SMA is done in a virtual machine with an Ubuntu Linux distribution including all necessary software tools to perform the entire cycle of development. Eclipse IDE (Integrated Development Environment) is used to develop the SMA project and to write the code of each data processing algorithm. This paper presents the developed software architecture and describes the necessary steps to add new data processing algorithms to SMA in order to increase the processing capabilities of PAMELA devices.An example of basic damage index estimation using delay and sum algorithm is provided.
Resumo:
Advances in three-dimensional (313) electron microscopy (EM) and image processing are providing considerable improvements in the resolution of subcellular volumes, macromolecular assemblies and individual proteins. However, the recovery of high-frequency information from biological samples is hindered by specimen sensitivity to beam damage. Low dose electron cryo-microscopy conditions afford reduced beam damage but typically yield images with reduced contrast and low signal-to-noise ratios (SNRs). Here, we describe the properties of a new discriminative bilateral (DBL) filter that is based upon the bilateral filter implementation of Jiang et al. (Jiang, W., Baker, M.L., Wu, Q., Bajaj, C., Chin, W., 2003. Applications of a bilateral denoising filter in biological electron microscopy. J. Struc. Biol. 128, 82-97.). In contrast to the latter, the DBL filter can distinguish between object edges and high-frequency noise pixels through the use of an additional photometric exclusion function. As a result, high frequency noise pixels are smoothed, yet object edge detail is preserved. In the present study, we show that the DBL filter effectively reduces noise in low SNR single particle data as well as cellular tomograms of stained plastic sections. The properties of the DBL filter are discussed in terms of its usefulness for single particle analysis and for pre-processing cellular tomograms ahead of image segmentation. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
This thesis documents the design, manufacture and testing of a passive and non-invasive micro-scale planar particle-from-fluid filter for segregating cell types from a homogeneous suspension. The microfluidics system can be used to separate spermatogenic cells from testis biopsy samples, providing a mechanism for filtrate retrieval for assisted reproduction therapy. The system can also be used for point-of-service diagnostics applications for hospitals, lab-on-a-chip pre-processing and field applications such as clinical testing in the third world. Various design concepts are developed and manufactured, and are assessed based on etched structure morphology, robustness to variations in the manufacturing process, and design impacts on fluid flow and particle separation characteristics. Segregation was measured using image processing algorithms that demonstrate efficiency is more than 55% for 1 µl volumes at populations exceeding 1 x 107. the technique supports a significant reduction in time over conventional processing, in the separation and identification of particle groups, offering a potential reduction in the associated cost of the targeted procedure. The thesis has developed a model of quasi-steady wetting flow within the micro channel and identifies the forces across the system during post-wetting equalisation. The model and its underlying assumptions are validated empirically in microfabricated test structures through a novel Micro-Particle Image Velocimetry technique. The prototype devices do not require ancillary equipment nor additional filtration media, and therefore offer fewer opportunities for sample contamination over conventional processing methods. The devices are disposable with minimal reagent volumes and process waste. Optimal processing parameters and production methods are identified with any improvements that could be made to enhance their performance in a number of identified potential applications.
Resumo:
Hyperspectral instruments have been incorporated in satellite missions, providing data of high spectral resolution of the Earth. This data can be used in remote sensing applications, such as, target detection, hazard prevention, and monitoring oil spills, among others. In most of these applications, one of the requirements of paramount importance is the ability to give real-time or near real-time response. Recently, onboard processing systems have emerged, in order to overcome the huge amount of data to transfer from the satellite to the ground station, and thus, avoiding delays between hyperspectral image acquisition and its interpretation. For this purpose, compact reconfigurable hardware modules, such as field programmable gate arrays (FPGAs) are widely used. This paper proposes a parallel FPGA-based architecture for endmember’s signature extraction. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data sets collected by the NASA’s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Cuprite mining district in Nevada. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems, opening new perspectives for onboard hyperspectral image processing.
Resumo:
In this paper, we demonstrate a digital signal processing (DSP) algorithm for improving spatial resolution of images captured by CMOS cameras. The basic approach is to reconstruct a high resolution (HR) image from a shift-related low resolution (LR) image sequence. The aliasing relationship of Fourier transforms between discrete and continuous images in the frequency domain is used for mapping LR images to a HR image. The method of projection onto convex sets (POCS) is applied to trace the best estimate of pixel matching from the LR images to the reconstructed HR image. Computer simulations and preliminary experimental results have shown that the algorithm works effectively on the application of post-image-captured processing for CMOS cameras. It can also be applied to HR digital image reconstruction, where shift information of the LR image sequence is known.