963 resultados para Illinois. Ambient Air Monitoring Section


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This fact sheet summarizes the water quality data collected as part of the Iowa Department of Natural Resources ambient lake monitoring program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary of sites and parameters monitored as part of the Iowa Department of Natural Resources lake monitoring program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Iowa Department of Natural Resources (DNR) Ambient Water Monitoring Program provides consistent, unbiased information about the condition of Iowa’s water resources to support decisions affecting the development, management and protection of these resources. To strengthen its services, the program worked with a variety of stakeholders and other DNR programs to develop a five-year strategy for Iowa’s ambient water monitoring efforts. The strategy identifies opportunities to improve the program’s effectiveness in several categories: monitoring objectives, sampling design, data management, products and services, and program evaluation and coordination. Iowa DNR managers and technical staff will use the new strategy to guide decisions affecting the ambient monitoring program over the next five years. The strategy should also serve as a robust informational resource for stakeholders, policy makers, legislators and the public.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this paper is on the measured particle number concentrations (PNC) as well as elemental and organic carbon in 17 primary schools. This study is part of the “Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH)”, which aims to determine the relationship between exposure to traffic related ultrafine (UF) particles and children’s health (http://www.ilaqh.qut.edu.au/Misc/UPTECH%20Home.htm). To achieve this, air quality and health data are being collected at 25 schools within Brisbane Metropolitan Area in Australia over two years. This paper presents the general aspects of UF particles data and preliminary results from the first 17 schools (S01 to S17), tested from Oct 2010 to Dec 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on this new data, the Illinois EPA has requested that the Illinois Attorney General initiate legal action against H. Kramer relative to its contribution to a violation of the lead National Ambient Air Quality Standard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air pollution is ranked by the World Health Organisation as one of the top ten contributors to the global burden of disease and injury. Exposure to gaseous air pollutants, even at a low level, has been associated with cardiorespiratory diseases (Vedal, Brauer et al. 2003). Most recent epidemiological studies of air pollution have used time-series analyses to explore the relationship between daily mortality or morbidity and daily ambient air pollution concentrations based on the same day or previous days (Hajat, Armstrong et al. 2007). However, most of the previous studies have examined the association between air pollution and health outcomes using air pollution data from a single monitoring site or average values from a few monitoring sites to represent the whole population of the study area. In fact, for a metropolitan city, ambient air pollution levels may differ significantly among the different areas. There is increasing concern that the relationships between air pollution and mortality may vary with geographical area (Chen, Mengersen et al. 2007). Additionally, some studies have indicated that socio-economic status can act as a confounder when investigating the relation between geographical location and health (Scoggins, Kjellstrom et al. 2004). This study examined the spatial variation in the relationship between long-term exposure to gaseous air pollutants (including nitrogen dioxide (NO2), ozone (O3) and sulphur dioxide (SO2)), and cardiorespiratory mortality in Brisbane, Australia, during the period 1996 - 2004.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric nanoparticles are one of those pollutants currently unregulated through ambient air quality standards. The aim of this chapter is to assess the environmental and health impacts of atmospheric nanoparticles in European environments. The chapter begins with the conventional information on the origin of atmospheric nanoparticles, followed by their physical and chemical characteristics. A brief overview of recently published review articles on this topic is then presented to guide those readers interested in exploring any specific aspect of nanoparticles in greater detail. A further section reports a summary of recently published studies on atmospheric nanoparticles in European cities. This covers a total of about 45 sampling locations in 30 different cities within 15 European countries for quantifying levels of roadside and urban background particle number concentrations (PNCs). Average PNCs at roadside and urban background sites were found to be 3.82±3.25 ×104 cm–3 and 1.63±0.82 ×104 cm–3, respectively, giving a roadside to background PNC ratio of ~2.4. Engineered nanoparticles are one of the key emerging categories of airborne nanoparticles, especially for the indoor environments. Their ambient concentrations may increase in future due to widespread use of nanotechnology integrated products. Evaluation of their sources and probable impacts on air quality and human health are briefly discussed in the following section. Respiratory deposition doses received by the public exposed to roadside PNCs in numerous European locations are then estimated. These were found to be in the 1.17–7.56 1010 h–1 range over the studied roadside European locations. The following section discusses the potential framework for airborne nanoparticle regulations in Europe and, in addition, the existing control measures to limit nanoparticle emissions at source. The chapter finally concludes with a synthesis of the topic areas covered and highlights important areas for further work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Occupational standards concerning allowable concentrations of chemical compounds in the ambient air of workplaces have been established in several countries worldwide. With the integration of the European Union (EU), there has been a need of establishing harmonised Occupational Exposure Limits (OEL). The European Commission Directive 95/320/EC of 12 July 1995 has given the tasks to a Scientific Committee for Occupational Exposure Limits (SCOEL) to propose, based on scientific data and where appropriate, occupational limit values which may include the 8-h time-weighted average (TWA), short-term limits/excursion limits (STEL) and Biological Limit Values (BLVs). In 2000, the European Union issued a list of 62 chemical substances with Occupational Exposure Limits. Of these, 25 substances received a "skin" notation, indicating that toxicologically significant amounts may be taken up via the skin. For such substances, monitoring of concentrations in ambient air may not be sufficient, and biological monitoring strategies appear of potential importance in the medical surveillance of exposed workers. Recent progress has been made with respect to formulation of a strategy related to health-based BLVs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human exposures in transportation microenvironments are poorly represented by ambient stationary monitoring. A number of on-road studies using vehicle-based mobile monitoring have been conducted to address this. Most previous studies were conducted on urban roads in developed countries where the primary emission source was vehicles. Few studies have examined on-road pollution in developing countries in urban settings. Currently, no study has been conducted for roadways in rural environments where a substantial proportion of the population live. This study aimed to characterize on-road air quality on the East-West Highway (EWH) in Bhutan and identify its principal sources. We conducted six mobile measurements of PM10, particle number (PN) count and CO along the entire 570 km length of the EWH. We divided the EWH into five segments, R1-R5, taking the road length between two district towns as a single road segment. The pollutant concentrations varied widely along the different road segments, with the highest concentrations for R5 compared with other road segments (PM10 = 149 µg/m3, PN = 5.74 × 104 particles/cm-3, CO = 0.19 ppm), which is the final segment of the road to the capital. Apart from vehicle emissions, the dominant sources were road works, unpaved roads and roadside combustion activities. Overall, the highest contributions above the background levels were made by unpaved roads for PM10 (6 times background), and vehicle emissions for PN and CO (5 and 15 times background, respectively). Notwithstanding the differences in instrumentation used and particle size range measured, the current study showed lower PN concentrations compared with similar on-road studies. However, concentrations were still high enough that commuters, road maintenance workers and residents living along the EWH, were potentially exposed to elevated pollutant concentrations from combustion and non-combustion sources. Future studies should focus on assessing the dispersion patterns of roadway pollutants and defining the short- and long-term health impacts of exposure in Bhutan, as well as in other developing countries with similar characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10-30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning events, especially prescribed burning, on urban air quality. The current results provide a solid platform for more detailed health and modelling investigations in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxics assessments in Environmental Justice applications, epidemiological studies, and environmental health risk assessments. In this study, we developed and applied a method to characterize air toxics concentrations in urban areas using results of the recently conducted field study in Wilmington, DE. Mobile measurements were collected over a 4- x 4-km area of downtown Wilmington for three components: formaldehyde (representative of volatile organic compounds and also photochemically reactive pollutants), aerosol size distribution (representing fine particulate matter), and water-soluble hexavalent chromium (representative of toxic metals). These measurements were,used to construct spatial and temporal distributions of air toxics in the area that show a very strong temporal variability, both diurnally and seasonally. An analysis of spatial variability indicates that all pollutants varied significantly by location, which suggests potential impact of local sources. From the comparison with measurements at the central monitoring site, we conclude that formaldehyde and fine particulates show a positive correlation with temperature, which could also be the reason that photochemically generated formaldehyde and fine particulates over the study area correlate well with the fine particulate matter measured at the central site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The respiratory tract is a major target of exposure to air pollutants, and respiratory diseases are associated with both short- and long-term exposures. We hypothesized that improved air quality in North Carolina was associated with reduced rates of death from respiratory diseases in local populations. MATERIALS AND METHODS: We analyzed the trends of emphysema, asthma, and pneumonia mortality and changes of the levels of ozone, sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matters (PM2.5 and PM10) using monthly data measurements from air-monitoring stations in North Carolina in 1993-2010. The log-linear model was used to evaluate associations between air-pollutant levels and age-adjusted death rates (per 100,000 of population) calculated for 5-year age-groups and for standard 2000 North Carolina population. The studied associations were adjusted by age group-specific smoking prevalence and seasonal fluctuations of disease-specific respiratory deaths. RESULTS: Decline in emphysema deaths was associated with decreasing levels of SO2 and CO in the air, decline in asthma deaths-with lower SO2, CO, and PM10 levels, and decline in pneumonia deaths-with lower levels of SO2. Sensitivity analyses were performed to study potential effects of the change from International Classification of Diseases (ICD)-9 to ICD-10 codes, the effects of air pollutants on mortality during summer and winter, the impact of approach when only the underlying causes of deaths were used, and when mortality and air-quality data were analyzed on the county level. In each case, the results of sensitivity analyses demonstrated stability. The importance of analysis of pneumonia as an underlying cause of death was also highlighted. CONCLUSION: Significant associations were observed between decreasing death rates of emphysema, asthma, and pneumonia and decreases in levels of ambient air pollutants in North Carolina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prospective cohort studies have provided evidence on longer-term mortality risks of fine particulate matter (PM2.5), but due to their complexity and costs, only a few have been conducted. By linking monitoring data to the U.S. Medicare system by county of residence, we developed a retrospective cohort study, the Medicare Air Pollution Cohort Study (MCAPS), comprising over 20 million enrollees in the 250 largest counties during 2000-2002. We estimated log-linear regression models having as outcome the age-specific mortality rate for each county and as the main predictor, the average level for the study period 2000. Area-level covariates were used to adjust for socio-economic status and smoking. We reported results under several degrees of adjustment for spatial confounding and with stratification into by eastern, central and western counties. We estimated that a 10 µg/m3 increase in PM25 is associated with a 7.6% increase in mortality (95% CI: 4.4 to 10.8%). We found a stronger association in the eastern counties than nationally, with no evidence of an association in western counties. When adjusted for spatial confounding, the estimated log-relative risks drop by 50%. We demonstrated the feasibility of using Medicare data to establish cohorts for follow-up for effects of air pollution. Particulate matter (PM) air pollution is a global public health problem (1). In developing countries, levels of airborne particles still reach concentrations at which serious health consequences are well-documented; in developed countries, recent epidemiologic evidence shows continued adverse effects, even though particle levels have declined in the last two decades (2-6). Increased mortality associated with higher levels of PM air pollution has been of particular concern, giving an imperative for stronger protective regulations (7). Evidence on PM and health comes from studies of acute and chronic adverse effects (6). The London Fog of 1952 provides dramatic evidence of the unacceptable short-term risk of extremely high levels of PM air pollution (8-10); multi-site time-series studies of daily mortality show that far lower levels of particles are still associated with short-term risk (5)(11-13). Cohort studies provide complementary evidence on the longer-term risks of PM air pollution, indicating the extent to which exposure reduces life expectancy. The design of these studies involves follow-up of cohorts for mortality over periods of years to decades and an assessment of mortality risk in association with estimated long-term exposure to air pollution (2-4;14-17). Because of the complexity and costs of such studies, only a small number have been conducted. The most rigorously executed, including the Harvard Six Cities Study and the American Cancer Society’s (ACS) Cancer Prevention Study II, have provided generally consistent evidence for an association of long- term exposure to particulate matter air pollution with increased all-cause and cardio-respiratory mortality (2,4,14,15). Results from these studies have been used in risk assessments conducted for setting the U.S. National Ambient Air Quality Standard (NAAQS) for PM and for estimating the global burden of disease attributable to air pollution (18,19). Additional prospective cohort studies are necessary, however, to confirm associations between long-term exposure to PM and mortality, to broaden the populations studied, and to refine estimates by regions across which particle composition varies. Toward this end, we have used data from the U.S. Medicare system, which covers nearly all persons 65 years of age and older in the United States. We linked Medicare mortality data to (particulate matter less than 2.5 µm in aerodynamic diameter) air pollution monitoring data to create a new retrospective cohort study, the Medicare Air Pollution Cohort Study (MCAPS), consisting of 20 million persons from 250 counties and representing about 50% of the US population of elderly living in urban settings. In this paper, we report on the relationship between longer-term exposure to PM2.5 and mortality risk over the period 2000 to 2002 in the MCAPS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Southeast Texas, including Houston, has a large presence of industrial facilities and has been documented to have poorer air quality and significantly higher cancer rates than the remainder of Texas. Given citizens’ concerns in this 4th largest city in the U.S., Mayor Bill White recently partnered with the UT School of Public Health to determine methods to evaluate the health risks of hazardous air pollutants (HAPs). Sexton et al. (2007) published a report that strongly encouraged analytic studies linking these pollutants with health outcomes. In response, we set out to complete the following aims: 1. determine the optimal exposure assessment strategy to assess the association between childhood cancer rates and increased ambient levels of benzene and 1,3-butadiene (in an ecologic setting) and 2. evaluate whether census tracts with the highest levels of benzene or 1,3-butadiene have higher incidence of childhood lymphohematopoietic cancer compared with census tracts with the lowest levels of benzene or 1,3-butadiene, using Poisson regression. The first aim was achieved by evaluating the usefulness of four data sources: geographic information systems (GIS) to identify proximity to point sources of industrial air pollution, industrial emission data from the U.S. EPA’s Toxic Release Inventory (TRI), routine monitoring data from the U.S. EPA Air Quality System (AQS) from 1999-2000 and modeled ambient air levels from the U.S. EPA’s 1999 National Air Toxic Assessment Project (NATA) ASPEN model. Further, once these four data sources were evaluated, we narrowed them down to two: the routine monitoring data from the AQS for the years 1998-2000 and the 1999 U.S. EPA NATA ASPEN modeled data. We applied kriging (spatial interpolation) methodology to the monitoring data and compared the kriged values to the ASPEN modeled data. Our results indicated poor agreement between the two methods. Relative to the U.S. EPA ASPEN modeled estimates, relying on kriging to classify census tracts into exposure groups would have caused a great deal of misclassification. To address the second aim, we additionally obtained childhood lymphohematopoietic cancer data for 1995-2004 from the Texas Cancer Registry. The U.S. EPA ASPEN modeled data were used to estimate ambient levels of benzene and 1,3-butadiene in separate Poisson regression analyses. All data were analyzed at the census tract level. We found that census tracts with the highest benzene levels had elevated rates of all leukemia (rate ratio (RR) = 1.37; 95% confidence interval (CI), 1.05-1.78). Among census tracts with the highest 1,3-butadiene levels, we observed RRs of 1.40 (95% CI, 1.07-1.81) for all leukemia. We detected no associations between benzene or 1,3-butadiene levels and childhood lymphoma incidence. This study is the first to examine this association in Harris and surrounding counties in Texas and is among the first to correlate monitored levels of HAPs with childhood lymphohematopoietic cancer incidence, evaluating several analytic methods in an effort to determine the most appropriate approach to test this association. Despite recognized weakness of ecologic analyses, our analysis suggests an association between childhood leukemia and hazardous air pollution.^