976 resultados para Ifn-alpha Production
Resumo:
Schistosoma mansoni infections are associated with a strong Th2 cytokine response. Treatment of mice with IL-12 or anti-IL-2 or anti-IL-4 before i.v. injection of eggs increased IFN-gamma production and downregulated Th2 responses and pulmonary granuloma size. Conversely, anti-IFN-gamma antibody treatment increased Th2 responses and granuloma size. Similar manipulation produced less dramatic results in infected mice. However, sensitization of mice with eggs + IL-12 before infection augmented the Th1 response and decreased Th2 cytokines, granuloma size and fibrosis. Antisera to IFN-gamma, TNF-alpha or IL-12 during IL-12-egg immunization partly restored granuloma size and fibrosis following infection. Variations in the size of granulomas in acute (8 week) infections may be influenced primarily by the number and state of activation of T cells. In chronic (12-16 week) infections immunologic downmodulation proceeded normally in mice without functional CD8+ cells and in IFN-gamma KO mice but not in B cell KO (muMT) mice or in mice deficient in FcR expression in spite of the fact that these mice downregulated their T cell and cytokine responses. It is evident that the participation of cytokines in granuloma formation and regulation is complicated and that the mechanisms controlling both these phenomena are likely to involve both T cells and antibody/FcR interactions.
Resumo:
Mouse mammary tumor virus (MMTV) is a retrovirus which induces a strong immune response and a dramatic increase in the number of infected cells through the expression of a superantigen (SAg). Many cytokines are likely to be involved in the interaction between MMTV and the immune system. In particular, alpha/beta interferon (IFN-alpha/beta) and gamma interferon (IFN-gamma) exert many antiviral and immunomodulatory activities and play a critical role in other viral infections. In this study, we have investigated the importance of interferons during MMTV infection by using mice with a disrupted IFN-alpha/beta or IFN-gamma receptor gene. We found that the SAg response to MMTV was not modified in IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice. This was true both for the early expansion of B and T cells induced by the SAg and for the deletion of SAg-reactive cells at later stages of the infection. In addition, no increase in the amount of proviral DNA was detected in tissues of IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice, suggesting that interferons are not essential antiviral defense mechanisms during MMTV infection. In contrast, IFN-gammaR(0/0) mice had increased amounts of IL-4 mRNA and an altered usage of immunoglobulin isotypes with a reduced frequency of IgG2a- and IgG3-producing cells. This was associated with lower titers of virus-specific antibodies in serum early after infection, although efficient titers were reached later.
Resumo:
beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae, has been found to enhance immune functions. This study investigated in vivo and in vitro effects of beta-glucan on lymphoproliferation and interferon-gamma (IFN-gamma) production by splenic cells from C57BL/6 female mice. All experiments were performed with particulate beta-glucan derived from S. cerevisiae. Data demonstrated that both, i.p administration of particulate beta-glucan (20 or 100 µg/animal) and in vitro stimulation of splenic cells (20 or 100 µg/ml of culture) decreased lymphoproliferation and IFN-gamma production induced by concanavalin A. These results suggest that beta-glucan can trigger a down-modulatory effect regulating a deleterious immune system hyperactivity in the presence of a strong stimulus.
Resumo:
Type I interferon (IFN-α/β) induction upon viral infection contributes to the early antiviral host defense and ensures survival until the onset of adaptive immunity. Many viral infections lead to an acute, transient IFN expression which peaks a few hours after infection and reverts to initial levels after 24 to 36 h. Robust IFN expression often is conferred by specialized plasmacytoid dendritic cells (pDC) and may depend on positive-feedback amplification via the type I IFN receptor (IFNAR). Here, we show that mice infected with Thogoto virus (THOV), which is an influenza virus-like orthomyxovirus transmitted by ticks, mounted sustained IFN responses that persisted up to 72 h after infection. For this purpose, we used a variant of THOV lacking its IFN-antagonistic protein ML, an elongated version of the matrix (M) protein [THOV(ΔML)]. Of note, large amounts of type I IFN were also found in the serum of mice lacking the IFNAR. Early IFN-α expression seemed to depend on Toll-like receptor (TLR) signaling, whereas prolonged IFN-α responses strictly depended on RIG-I-like helicase (RLH) signaling. Unexpectedly, THOV(ΔML)-infected bone marrow-derived pDC (BM-pDC) produced only moderate IFN levels, whereas myeloid DC (BM-mDC) showed massive IFN induction that was IPS-1-dependent, suggesting that BM-mDC are involved in the massive, sustained IFN production in THOV(ΔML)-infected animals. Thus, our data are compatible with the model that THOV(ΔML) infection is sensed in the acute phase via TLR and RLH systems, whereas at later time points only RLH signaling is responsible for the induction of sustained IFN responses.
Resumo:
BACKGROUND The inability of cancer cells to present antigen on the cell surface via MHC class I molecules is one of the mechanisms by which tumor cells evade anti-tumor immunity. Alterations of Jak-STAT components of interferon (IFN)-mediated signaling can contribute to the mechanism of cell resistance to IFN, leading to lack of MHC class I inducibility. Hence, the identification of IFN-gamma-resistant tumors may have prognostic and/or therapeutic relevance. In the present study, we investigated a mechanism of MHC class I inducibility in response to IFN-gamma treatment in human melanoma cell lines. METHODS Basal and IFN-induced expression of HLA class I antigens was analyzed by means of indirect immunofluorescence flow cytometry, Western Blot, RT-PCR, and quantitative real-time RT-PCR (TaqMan(R) Gene Expression Assays). In demethylation studies cells were cultured with 5-aza-2'-deoxycytidine. Electrophoretic Mobility Shift Assay (EMSA) was used to assay whether IRF-1 promoter binding activity is induced in IFN-gamma-treated cells. RESULTS Altered IFN-gamma mediated HLA-class I induction was observed in two melanoma cells lines (ESTDAB-004 and ESTDAB-159) out of 57 studied, while treatment of these two cell lines with IFN-alpha led to normal induction of HLA class I antigen expression. Examination of STAT-1 in ESTDAB-004 after IFN-gamma treatment demonstrated that the STAT-1 protein was expressed but not phosphorylated. Interestingly, IFN-alpha treatment induced normal STAT-1 phosphorylation and HLA class I expression. In contrast, the absence of response to IFN-gamma in ESTDAB-159 was found to be associated with alterations in downstream components of the IFN-gamma signaling pathway. CONCLUSION We observed two distinct mechanisms of loss of IFN-gamma inducibility of HLA class I antigens in two melanoma cell lines. Our findings suggest that loss of HLA class I induction in ESTDAB-004 cells results from a defect in the earliest steps of the IFN-gamma signaling pathway due to absence of STAT-1 tyrosine-phosphorylation, while absence of IFN-gamma-mediated HLA class I expression in ESTDAB-159 cells is due to epigenetic blocking of IFN-regulatory factor 1 (IRF-1) transactivation.
Resumo:
Trimethyltin (TMT) is a neurotoxicant known to induce early microglial activation. The present study was undertaken to investigate the role played by these microglial cells in the TMT-induced neurotoxicity. The effects of TMT were investigated in monolayer cultures of isolated microglia or in neuron-enriched cultures and in neuron-microglia and astrocyte-microglia cocultures. The end points used were morphological criteria; evaluation of cell death and cell proliferation; and measurements of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) release in culture supernatant. The results showed that, in cultures of microglia, TMT (10(-6) M) caused, after a 5-day treatment, an increased release of TNF-alpha, without affecting microglial shape or cell viability. When microglia were cocultured with astrocytes, TNF-alpha release was decreased to undetectable levels. In contrast, in neuron-microglia cocultures, TNF-alpha levels were found to increase at lower concentrations of TMT (i.e., 10(-8) M). Moreover, at 10(-6) M of TMT, microglia displayed further morphological activation, as suggested by process retraction and by decrease in cell size. No morphological activation was observed in cultures of isolated microglial cells and in astrocyte-microglia cocultures. With regard to neurons, 10(-6) M of TMT induced about 30% of cell death, when applied to neuron-enriched cultures, whereas close to 100% of neuronal death was observed in neuron-microglia cocultures. In conclusion, whereas astrocytes may rather dampen the microglial activation by decreasing microglial TNF-alpha production, neuronal-microglial interactions lead to enhanced microglial activation. This microglial activation, in turn, exacerbates the neurotoxic effects of TMT. TNF-alpha may play a major role in such cell-cell communications.
Resumo:
Background: Intervention with antiretroviral treatment (ART) and control of viral replication at the time of HIV-1 seroconversion may curtail cumulative immunological damage. We have therefore hypothesized that ART maintenance over a very prolonged period in HIV-1 seroconverters could induce an immuno-virological status similar to that of HIV-1 long-term non-progressors (LTNPs).Methodology/Principal Findings: We have investigated a cohort of 20 HIV-1 seroconverters on long-term ART (LTTS) and compared it to one of 15 LTNPs. Residual viral replication and reservoirs in peripheral blood, as measured by cell-associated HIV-1 RNA and DNA, respectively, were demonstrated to be similarly low in both cohorts. These two virologically matched cohorts were then comprehensively analysed by polychromatic flow cytometry for HIV-1-specific CD4(+) and CD8(+) T-cell functional profile in terms of cytokine production and cytotoxic capacity using IFN-gamma, IL-2, TNF-alpha production and perforin expression, respectively. Comparable levels of highly polyfunctional HIV-1-specific CD4(+) and CD8(+) T-cells were found in LTTS and LTNPs, with low perforin expression on HIV-1-specific CD8+ T-cells, consistent with a polyfunctional/non-cytotoxic profile in a context of low viral burden.Conclusions: Our results indicate that prolonged ART initiated at the time of HIV-1 seroconversion is associated with immuno-virological features which resemble those of LTNPs, strengthening the recent emphasis on the positive impact of early treatment initiation and paving the way for further interventions to promote virological control after treatment interruption.
Resumo:
The interferon (IFN)-γ response to peptides can be a useful diagnostic marker of Mycobacterium tuberculosis (MTB) latent infection. We identified promiscuous and potentially protective CD4+ T-cell epitopes from the most conserved regions of MTB antigenic proteins by scanning the MTB antigenic proteins GroEL2, phosphate-binding protein 1 precursor and 19 kDa antigen with the TEPITOPE algorithm. Seven peptide sequences predicted to bind to multiple human leukocyte antigen (HLA)-DR molecules were synthesised and tested with IFN-γ enzyme-linked immunospot (ELISPOT) assays using peripheral blood mononuclear cells (PBMCs) from 16 Mantoux tuberculin skin test (TST)-positive and 16 TST-negative healthy donors. Eighty-eight percent of TST-positive donors responded to at least one of the peptides, compared to 25% of TST-negative donors. Each individual peptide induced IFN-γ production by PBMCs from at least 31% of the TST-positive donors. The magnitude of the response against all peptides was 182 ± 230 x 106 IFN-γ spot forming cells (SFC) among TST-positive donors and 36 ± 62 x 106 SFC among TST-negative donors (p = 0.007). The response to GroEL2 (463-477) was only observed in the TST-positive group. This combination of novel MTB CD4 T-cell epitopes should be tested in a larger cohort of individuals with latent tuberculosis (TB) to evaluate its potential to diagnose latent TB and it may be included in ELISPOT-based IFN-γ assays to identify individuals with this condition.
Resumo:
Psoriasis is one of the most common human inflammatory skin diseases characterised by hyperproliferation and aberrant differentiation of keratinocytes. The trigger of the typical epidermal changes seen in psoriasis was considered to be a dysregulated immune response with Th-1/Tc1 cells playing a central role. Recent studies have provided new insights into psoriasis pathogenesis in defining intraepidermal alpha(1)beta(1)+ T cells as key effectors driving keratinocyte changes. Critical roles for IFN-alpha secreted by plasmacytoid dendritic cells and the IL-23/Th-17 axis were postulated. Initially, these subsequent stages are at least partially driven by the endogenous antimicrobial peptide LL37 that converts inert self-DNA into a potent trigger of interferon production by binding and delivering the DNA into plasmacytoid dendritic cells to trigger toll-like receptor 9. As LL37 is expressed by keratinocytes upon various stimuli, keratinocytes might regain momentum as instigators of an aberrant immune response which then precedes the characteristic changes in the epidermis. Data from these new studies indicate a complex interplay between keratinocytes overexpressing antimicrobial peptides and immune cells driving epidermal hyperproliferation and aberrant keratinocyte differentiation in the pathogenesis of psoriasis.
Resumo:
This study describes a form of partial agonism for a CD8+ CTL clone, S15, in which perforin-dependent killing and IFN-gamma production were lost but Fas (APO1 or CD95)-dependent cytotoxicity preserved. Cloned S15 CTL are H-2Kd restricted and specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). The presence of a photoactivatable group in the epitope permitted assessment of TCR-ligand binding by TCR photoaffinity labeling. Selective activation of Fas-dependent killing was observed for a peptide-derivative variant containing a modified photoreactive group. A similar functional response was obtained after binding of the wild-type peptide derivative upon blocking of CD8 participation in TCR-ligand binding. The epitope modification or blocking of CD8 resulted in an > or = 8-fold decrease in TCR-ligand binding. In both cases, phosphorylation of zeta-chain and ZAP-70, as well as calcium mobilization were reduced close to background levels, indicating that activation of Fas-dependent cytotoxicity required weaker TCR signaling than activation of perforin-dependent killing or IFN-gamma production. Consistent with this, we observed that depletion of the protein tyrosine kinase p56(lck) by preincubation of S15 CTL with herbimycin A severely impaired perforin- but not Fas-dependent cytotoxicity. Together with the observation that S15 CTL constitutively express Fas ligand, these results indicate that TCR signaling too weak to elicit perforin-dependent cytotoxicity or cytokine production can induce Fas-dependent cytotoxicity, possibly by translocation of preformed Fas ligand to the cell surface.
Resumo:
Interleukin (IL)-12p40, a subunit of IL-12p70 and IL-23, has previously been shown to inhibit IL-12p70 activity and interferon-gamma (IFN-gamma) production. However, recent evidence has suggested that the role of IL-12p40 is more complex. To study the contribution of IL-12p40 to immune responses against mycobacterial infections, we have used transgenic (tg) mice overexpressing IL-12p40 under the control of a major histocompatibility complex-II promoter. The IL-12p40 transgene was expressed during steady state at concentrations of 129 +/- 25 ng/ml of serum and 75 +/- 13 ng per spleen, while endogenous IL-12p40 was hardly detectable in control littermates. Bacille Calmette-Guérin (BCG) infection strongly induced the expression of IL-12p40 transgene in infected organs, and IL-12p40 monomeric and dimeric forms were identified in spleen of IL-12p40 tg mice. Excessive production of IL-12p40 resulted in a 14-fold increase in IL-12p70 serum levels in tg mice versus non-transgenic mice. IL-23 was also strongly elevated in the serum and spleens of IL-12p40 tg mice through BCG infection. While IFN-gamma and tumour necrosis factor protein levels were similar in IL-12p40 tg and non-transgenic mice, Th2 type immune responses were reduced in IL-12p40 tg mice. The number of BCG granulomas and macrophage expressing inducible nitric oxide synthase were similar in IL-12p40 tg and non-transgenic mice. IL-12p40 tg mice were as resistant as non-transgenic mice to BCG and Mycobacterium tuberculosis infections as they could efficiently control bacillary growth. These data show that high amounts of IL-12p40 promotes IL-12p70 and IL-23 formation, but that does not affect T helper 1 type immune responses and granuloma function, thus leading to normal mycobacterial clearance in infected organs.
Resumo:
The modulation of HLA-DR and HLA-A, -B, and -C by human recombinant immune interferon (IFN-gamma) was studied on 10 malignant glioma cell lines established in our laboratory, on 8 clones or subclones derived from these lines, and on a fetal astrocyte cell line. Comparative studies were performed with recombinant leukocyte interferon (IFN-alpha). The results not only confirmed the selective activity of IFN-gamma on the modulation of HLA-DR expression, as opposed to that of IFN-alpha, but also demonstrated a marked heterogeneity in the response of glioma cell lines and their clones to the two types of IFN tested. For example, all 3 clones of an inducible cell line could be modulated to express HLA-DR, whereas only 2 of 5 clones derived from a noninducible line were modulated. This heterogeneity did not seem to be due to the absence of the receptor for IFN-gamma on the surface of these cells, since almost all of the cell lines or clones tested (17 of 19) responded to IFN-gamma by the induction or enhancement of the expression for either HLA-DR or HLA-A, -B, and -C (or both). The heterogeneity of induction was also demonstrated between clones derived from a glioma line that did not express HLA-DR after IFN-gamma treatment. The production of HLA-DR by one of the clones was abundant enough to be confirmed by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis.
Resumo:
Interferon alpha (IFN-alpha) therapy is associated with a number of immunological side-effects, including autoimmune diseases and a 10% prevalence of thyroiditis. Hepatitis C virus (HCV) infection itself predisposes to autoimmune phenomena including hypothyroidism and myositis. The development of clinical hypothyroidism in the presence of positive thyroid antibodies in patients infected with HCV and treated with IFN-alpha suggests a possible association between the viral disease and the therapy. HCV infection may predispose to autoimmune thyroid disease and IFN-alpha therapy may secondarily lead to the development of thyroid dysfunctions. We report the single case of a female patient who developed a severe proximal myopathy in conjunction with primary hypothyroidism (Hoffmann's syndrome) secondarily to IFN-alpha therapy for HCV infection. This case highlights the need for careful clinical and biological monitoring for potential side-effects in such patients.
Resumo:
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. The current standard therapy for chronic hepatitis C (CHC) consists of a combination of pegylated IFN alpha (pegIFNalpha) and ribavirin. It achieves a sustained viral clearance in only 50-60% of patients. To learn more about molecular mechanisms underlying treatment failure, we investigated IFN-induced signaling in paired liver biopsies collected from CHC patients before and after administration of pegIFNalpha. In patients with a rapid virological response to treatment, pegIFNalpha induced a strong up-regulation of IFN-stimulated genes (ISGs). As shown previously, nonresponders had high expression levels of ISGs before therapy. Analysis of posttreatment biopsies of these patients revealed that pegIFNalpha did not induce expression of ISGs above the pretreatment levels. In accordance with ISG expression data, phosphorylation, DNA binding, and nuclear localization of STAT1 indicated that the IFN signaling pathway in nonresponsive patients is preactivated and refractory to further stimulation. Some features characteristic of nonresponders were more accentuated in patients infected with HCV genotypes 1 and 4 compared with genotypes 2 and 3, providing a possible explanation for the poor response of the former group to therapy. Taken together with previous findings, our data support the concept that activation of the endogenous IFN system in CHC not only is ineffective in clearing the infection but also may impede the response to therapy, most likely by inducing a refractory state of the IFN signaling pathway.
Resumo:
Alcoholic liver disease is mediated via activation of TLR4 signaling; MyD88-dependent and -independent signals are important contributors to injury in mouse models. Adiponectin, an anti-inflammatory adipokine, suppresses TLR4/MyD88-dependent responses via induction of heme oxygenase-1 (HO-1). Here we investigated the interactions between chronic ethanol, adiponectin, and HO-1 in regulation of TLR4/MyD88-independent signaling in macrophages and an in vivo mouse model. After chronic ethanol feeding, LPS-stimulated expression of IFN-β and CXCL10 mRNA was increased in primary cultures of Kupffer cells compared with pair-fed control mice. Treatment of Kupffer cells with globular adiponectin (gAcrp) normalized this response. LPS-stimulated IFN-β/CXCL10 mRNA and CXCL10 protein was also reduced in RAW 264.7 macrophages treated with gAcrp or full-length adiponectin. gAcrp and full-length adiponectin acted via adiponectin receptors 1 and 2, respectively. gAcrp decreased TLR4 expression in both Kupffer cells and RAW 264.7 macrophages. Small interfering RNA knockdown of HO-1 or inhibition of HO-1 activity with zinc protoporphyrin blocked these effects of gAcrp. C57BL/6 mice were exposed to chronic ethanol feeding, with or without treatment with cobalt protoporphyrin, to induce HO-1. After chronic ethanol feeding, mice were sensitized to in vivo challenge with LPS, expressing increased IFN-β/CXCL10 mRNA and CXCL10 protein in liver compared with control mice. Pretreatment with cobalt protoporphyrin 24 h before LPS challenge normalized this effect of ethanol. Adiponectin and induction of HO-1 potently suppressed TLR4-dependent/MyD88-independent cytokine expression in primary Kupffer cells from rats and in mouse liver after chronic ethanol exposure. These data suggest that induction of HO-1 may be a useful therapeutic strategy in alcoholic liver disease.