76 resultados para ISOPARAMETRIC HYPERSURFACES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zusammenfassung In der vorliegenden Arbeit besch¨aftige ich mich mit Differentialgleichungen von Feynman– Integralen. Ein Feynman–Integral h¨angt von einem Dimensionsparameter D ab und kann f¨ur ganzzahlige Dimension als projektives Integral dargestellt werden. Dies ist die sogenannte Feynman–Parameter Darstellung. In Abh¨angigkeit der Dimension kann ein solches Integral divergieren. Als Funktion in D erh¨alt man eine meromorphe Funktion auf ganz C. Ein divergentes Integral kann also durch eine Laurent–Reihe ersetzt werden und dessen Koeffizienten r¨ucken in das Zentrum des Interesses. Diese Vorgehensweise wird als dimensionale Regularisierung bezeichnet. Alle Terme einer solchen Laurent–Reihe eines Feynman–Integrals sind Perioden im Sinne von Kontsevich und Zagier. Ich beschreibe eine neue Methode zur Berechnung von Differentialgleichungen von Feynman– Integralen. ¨ Ublicherweise verwendet man hierzu die sogenannten ”integration by parts” (IBP)– Identit¨aten. Die neue Methode verwendet die Theorie der Picard–Fuchs–Differentialgleichungen. Im Falle projektiver oder quasi–projektiver Variet¨aten basiert die Berechnung einer solchen Differentialgleichung auf der sogenannten Griffiths–Dwork–Reduktion. Zun¨achst beschreibe ich die Methode f¨ur feste, ganzzahlige Dimension. Nach geeigneter Verschiebung der Dimension erh¨alt man direkt eine Periode und somit eine Picard–Fuchs–Differentialgleichung. Diese ist inhomogen, da das Integrationsgebiet einen Rand besitzt und daher nur einen relativen Zykel darstellt. Mit Hilfe von dimensionalen Rekurrenzrelationen, die auf Tarasov zur¨uckgehen, kann in einem zweiten Schritt die L¨osung in der urspr¨unglichen Dimension bestimmt werden. Ich beschreibe außerdem eine Methode, die auf der Griffiths–Dwork–Reduktion basiert, um die Differentialgleichung direkt f¨ur beliebige Dimension zu berechnen. Diese Methode ist allgemein g¨ultig und erspart Dimensionswechsel. Ein Erfolg der Methode h¨angt von der M¨oglichkeit ab, große Systeme von linearen Gleichungen zu l¨osen. Ich gebe Beispiele von Integralen von Graphen mit zwei und drei Schleifen. Tarasov gibt eine Basis von Integralen an, die Graphen mit zwei Schleifen und zwei externen Kanten bestimmen. Ich bestimme Differentialgleichungen der Integrale dieser Basis. Als wichtigstes Beispiel berechne ich die Differentialgleichung des sogenannten Sunrise–Graphen mit zwei Schleifen im allgemeinen Fall beliebiger Massen. Diese ist f¨ur spezielle Werte von D eine inhomogene Picard–Fuchs–Gleichung einer Familie elliptischer Kurven. Der Sunrise–Graph ist besonders interessant, weil eine analytische L¨osung erst mit dieser Methode gefunden werden konnte, und weil dies der einfachste Graph ist, dessen Master–Integrale nicht durch Polylogarithmen gegeben sind. Ich gebe außerdem ein Beispiel eines Graphen mit drei Schleifen. Hier taucht die Picard–Fuchs–Gleichung einer Familie von K3–Fl¨achen auf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gaussian-3 method developed by Pople and coworkers has been used to calculate the free energy of neutral octamer clusters of water, (H2O)8. The most energetically stable structures are in excellent agreement with those determined from experiment and those predicted from previous high-level calculations. Cubic structures are favored over noncubic structures over all temperature ranges studied. The D2d cubic structure is the lowest free energy structure and dominates the potential energy and free energy hypersurfaces from 0 K to 298 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gaussian-3 (G3) model chemistry method has been used to calculate the relative ΔG° values for all possible conformers of neutral clusters of water, (H2O)n, where n = 3−5. A complete 12-fold conformational search around each hydrogen bond produced 144, 1728, and 20 736 initial starting structures of the water trimer, tetramer, and pentamer. These structures were optimized with PM3, followed by HF/6-31G* optimization, and then with the G3 model chemistry. Only two trimers are present on the G3 potential energy hypersurface. We identified 5 tetramers and 10 pentamers on the potential energy and free-energy hypersurfaces at 298 K. None of these 17 structures were linear; all linear starting models folded into cyclic or three-dimensional structures. The cyclic pentamer is the most stable isomer at 298 K. On the basis of this and previous studies, we expect the cyclic tetramers and pentamers to be the most significant cyclic water clusters in the atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Squeeze film damping effects naturally occur if structures are subjected to loading situations such that a very thin film of fluid is trapped within structural joints, interfaces, etc. An accurate estimate of squeeze film effects is important to predict the performance of dynamic structures. Starting from linear Reynolds equation which governs the fluid behavior coupled with structure domain which is modeled by Kirchhoff plate equation, the effects of nondimensional parameters on the damped natural frequencies are presented using boundary characteristic orthogonal functions. For this purpose, the nondimensional coupled partial differential equations are obtained using Rayleigh-Ritz method and the weak formulation, are solved using polynomial and sinusoidal boundary characteristic orthogonal functions for structure and fluid domain respectively. In order to implement present approach to the complex geometries, a two dimensional isoparametric coupled finite element is developed based on Reissner-Mindlin plate theory and linearized Reynolds equation. The coupling between fluid and structure is handled by considering the pressure forces and structural surface velocities on the boundaries. The effects of the driving parameters on the frequency response functions are investigated. As the next logical step, an analytical method for solution of squeeze film damping based upon Green’s function to the nonlinear Reynolds equation considering elastic plate is studied. This allows calculating modal damping and stiffness force rapidly for various boundary conditions. The nonlinear Reynolds equation is divided into multiple linear non-homogeneous Helmholtz equations, which then can be solvable using the presented approach. Approximate mode shapes of a rectangular elastic plate are used, enabling calculation of damping ratio and frequency shift as well as complex resistant pressure. Moreover, the theoretical results are correlated and compared with experimental results both in the literature and in-house experimental procedures including comparison against viscoelastic dampers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide counterexamples to the stable equivalence problem in every dimension d ≥ 2. That means that we construct hypersurfaces H₁ , H₂ ⊂ C d+1 whose cylinders H₁ × C and H₂ × C are equivalent hypersurfaces in C d+2 , although H₁ and H₂ themselves are not equivalent by an automorphism of C d+1 . We also give, for every d ≥ 2, examples of two non-isomorphic algebraic varieties of dimension d which are biholomorphic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose the use of a highly-accurate three-dimensional (3D) fully automatic hp-adaptive finite element method (FEM) for the characterization of rectangular waveguide discontinuities. These discontinuities are either the unavoidable result of mechanical/electrical transitions or deliberately introduced in order to perform certain electrical functions in modern communication systems. The proposed numerical method combines the geometrical flexibility of finite elements with an accuracy that is often superior to that provided by semi-analytical methods. It supports anisotropic refinements on irregular meshes with hanging nodes, and isoparametric elements. It makes use of hexahedral elements compatible with high-order H(curl)H(curl) discretizations. The 3D hp-adaptive FEM is applied for the first time to solve a wide range of 3D waveguide discontinuity problems of microwave communication systems in which exponential convergence of the error is observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this chapter we are going to develop some aspects of the implementation of the boundary element method (BEM)in microcomputers. At the moment the BEM is established as a powerful tool for problem-solving and several codes have been developed and maintained on an industrial basis for large computers. It is also well known that one of the more attractive features of the BEM is the reduction of the discretization to the boundary of the domain under study. As drawbacks, we found the non-bandedness of the final matrix, wich is a full asymmetric one, and the computational difficulties related to obtaining the integrals which appear in the influence coefficients. Te reduction in dimensionality is crucial from the point of view of microcomputers, and we believe that it can be used to obtain competitive results against other domain methods. We shall discuss two applications in this chapter. The first one is related to plane linear elastostatic situations, and the second refers to plane potential problems. In the first case we shall present the classical isoparametric BEM approach, using linear elements to represent both the geometry and the variables. The second case shows how to implement a p-adaptive procedure using the BEM. This latter case has not been studied until recently, and we think that the future of the BEM will be related to its development and to the judicious exploitation of the graphics capabilities of modern micros. Some examples will be included to demonstrate the kind of results that can be expected and sections of printouts will show useful details of implementation. In order to broaden their applicability, these printouts have been prepared in Basic, although no doubt other languages may be more appropiate for effective implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the epoch-making "memoir" of Saint-Venant in 1855 the torsion of prismatic and cilindrical bars has reduced to a mathematical problem: the calculation of an analytical function satisfying prescribed boundary values. For over one century, till the first applications of the F.E.M. to the problem, the only possibility of study in irregularly shaped domains was the beatiful, but limitated, theory of complex function analysis, several functional approaches and the finite difference method. Nevertheless in 1963 Jaswon published an interestingpaper which was nearly lost between the splendid F. E.M. boom. The method was extended by Rizzo to more complicated problems and definitively incorporated to the scientific community background through several lecture-notes of Cruse recently published, but widely circulated during past years. The work of several researches has shown the tremendous possibilities of the method which is today a recognized alternative to the well established F .E. procedure. In fact, the first comprehensive attempt to cover the method, has been recently published in textbook form. This paper is a contribution to the implementation of a difficulty which arises if the isoparametric elements concept is applicated to plane potential problems with sharp corners in the boundary domain. In previous works, these problems was avoided using two principal approximations: equating the fluxes round the corner or establishing a binode element (in fact, truncating the corner). The first approximation distortes heavily the solution in thecorner neighbourhood, and a great amount of element is neccesary to reduce its influence. The second is better suited but the price payed is increasing the size of the system of equations to be solved. In this paper an alternative formulation, consistent with the shape function chosen in the isoparametric representation, is presented. For ease of comprehension the formulation has been limited to the linear element. Nevertheless its extension to more refined elements is straight forward. Also a direct procedure for the assembling of the equations is presented in an attempt to reduce the in-core computer requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se presenta en esta comunicación el tratamiento de problemas de potencial en sistemas bidimensionales, haciendo uso de la discretización de su contorno o frontera mediante elementos parabólicos tanto en geometría como en las variables de campo. Se estudian las ventajas frente al uso de elementos isoparamétricos lineales dentro de la teoría del potencial. Se presenta también un estudio sobre las zonas singulares a que dan lugar los elementos parabólicos degenerados = This paper presents a B.I.E.M. for potential theory, using in the discretization a completely isoparametric parabolic formulation; that is, the field variable, its first derivative and the boundary domain are interpolated using second orden piecewise polinomic. Several results are presented and comparison is mode with other simpler formulations. Also treated is the posibility of modelling singular behavior by moving the midside mode of selected elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonlinear implicit finite element model for the solution of two-dimensional (2-D) shallow water equations, based on a Galerkin formulation of the 2-D estuaries hydrodynamic equations, has been developed. Spatial discretization has been achieved by the use of isoparametric, Lagrangian elements. To obtain the different element matrices, Simpson numerical integration has been applied. For time integration of the model, several schemes in finite differences have been used: the Cranck-Nicholson iterative method supplies a superior accuracy and allows us to work with the greatest time step Δt; however, central differences time integration produces a greater velocity of calculation. The model has been tested with different examples to check its accuracy and advantages in relation to computation and handling of matrices. Finally, an application to the Bay of Santander is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En esta investigación se ha estudiado el efecto de la variación de la temperatura en la deflexión de firmes flexibles. En primer lugar se han recopilado los criterios existentes de ajuste de la deflexión por efecto de la temperatura. Posteriormente, se ha llevado a cabo un estudio empírico mediante la auscultación de las deflexiones en cinco tramos de carretera con firme flexible y con diferentes espesores de mezclas bituminosas (entre 10 y 30 cm). Las medidas se han efectuado en dos campañas (verano e invierno), tratando de abarcar un amplio rango de temperaturas. En cada campaña, se han llevado a cabo distintas auscultaciones a diferentes temperaturas. Las medidas de cada campaña se han realizado el mismo día. Se han obtenido los coeficientes empíricos de ajuste por temperatura para cada tramo analizado. Además, se ha realizado un estudio teórico mediante la elaboración de diferentes modelos (multicapa elástico lineal, multicapa visco-elástico lineal y elementos finitos) que reproducen la respuesta estructural de los firmes flexibles auscultados. La caracterización mecánica de las mezclas bituminosas se ha realizado mediante ensayos de módulo complejo en laboratorio, a diferentes temperaturas y frecuencias, sobre testigos extraídos en las carreteras estudiadas. Se han calculado los coeficientes teóricos de ajuste por temperatura para cada modelo elaborado y tramo analizado. Finalmente, se ha realizado un estudio comparativo entre los distintos coeficientes de ajuste (existentes, empíricos y teóricos), que ha puesto de manifiesto que, en todos los casos analizados, los coeficientes obtenidos en el modelo de elementos finitos son los que más se aproximan a los coeficientes empíricos (valor de referencia para los tramos analizados). El modelo desarrollado de elementos finitos permite reproducir el comportamiento visco-elástico de las mezclas bituminosas y el carácter dinámico de las cargas aplicadas. Se han utilizado elementos tipo tetraedro isoparamétrico lineal (C3D8R) para el firme y la parte superior del cimiento, mientras que para la parte inferior se han empleado elementos infinitos (CIN3D8). In this research the effect produced by the temperature change on flexible pavements deflection is analysed. First, the existing criteria of deflection adjustment by temperature were collected. Additionally, an empirical analysis was carried out, consisting on deflection tests in five flexible-pavement road sections with different asphalt mix thickness (from 10 to 30 cm). The measures were taken in two seasons (summer and winter) in an effort to register a wide range of temperatures. Different surveys were carried out at different temperatures in each season. The tests of each season were done at the same day. The empirical temperature adjustment factors for every analysed section were obtained. A theoretical study was carried out by developing different models (linear elastic multilayer, linear visco-elastic multilayer and finite elements) that reproduce the structural response of the tested flexible pavements. The mechanical characterization of the asphalt mixes was achieved through laboratory complex-modulus tests at different temperatures and frequencies, using pavement cores from the surveyed roads. The theoretical temperature adjustment factors for each model developed and each section analysed were calculated. Finally, a comparative study among the different adjustment factors (existing, empirical and theoretical) was carried out. It has shown that, in all analysed cases, the factors obtained with the finite elements model are the closest to the empirical factors (reference value for the analysed sections). The finite elements model developed makes it possible to reproduce the visco-elastic behavior of the asphalt mixes and the dynamic nature of the applied loads. Linear isoparametric tetrahedral elements (C3D8R) have been used for the pavement and the subgrade, while infinite elements (CIN3D8) have been used for the foundations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work described in this thesis deals with the development and application of a finite element program for the analysis of several cracked structures. In order to simplify the organisation of the material presented herein, the thesis has been subdivided into two Sections : In the first Section the development of a finite element program for the analysis of two-dimensional problems of plane stress or plane strain is described. The element used in this program is the six-mode isoparametric triangular element which permits the accurate modelling of curved boundary surfaces. Various cases of material aniftropy are included in the derivation of the element stiffness properties. A digital computer program is described and examples of its application are presented. In the second Section, on fracture problems, several cracked configurations are analysed by embedding into the finite element mesh a sub-region, containing the singularities and over which an analytic solution is used. The modifications necessary to augment a standard finite element program, such as that developed in Section I, are discussed and complete programs for each cracked configuration are presented. Several examples are included to demonstrate the accuracy and flexibility of the technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical techniques have been finding increasing use in all aspects of fracture mechanics, and often provide the only means for analyzing fracture problems. The work presented here, is concerned with the application of the finite element method to cracked structures. The present work was directed towards the establishment of a comprehensive two-dimensional finite element, linear elastic, fracture analysis package. Significant progress has been made to this end, and features which can now be studied include multi-crack tip mixed-mode problems, involving partial crack closure. The crack tip core element was refined and special local crack tip elements were employed to reduce the element density in the neighbourhood of the core region. The work builds upon experience gained by previous research workers and, as part of the general development, the program was modified to incorporate the eight-node isoparametric quadrilateral element. Also. a more flexible solving routine was developed, and provided a very compact method of solving large sets of simultaneous equations, stored in a segmented form. To complement the finite element analysis programs, an automatic mesh generation program has been developed, which enables complex problems. involving fine element detail, to be investigated with a minimum of input data. The scheme has proven to be versati Ie and reasonably easy to implement. Numerous examples are given to demonstrate the accuracy and flexibility of the finite element technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis and prediction of the dynamic behaviour of s7ructural components plays an important role in modern engineering design. :n this work, the so-called "mixed" finite element models based on Reissnen's variational principle are applied to the solution of free and forced vibration problems, for beam and :late structures. The mixed beam models are obtained by using elements of various shape functions ranging from simple linear to complex cubic and quadratic functions. The elements were in general capable of predicting the natural frequencies and dynamic responses with good accuracy. An isoparametric quadrilateral element with 8-nodes was developed for application to thin plate problems. The element has 32 degrees of freedom (one deflection, two bending and one twisting moment per node) which is suitable for discretization of plates with arbitrary geometry. A linear isoparametric element and two non-conforming displacement elements (4-node and 8-node quadrilateral) were extended to the solution of dynamic problems. An auto-mesh generation program was used to facilitate the preparation of input data required by the 8-node quadrilateral elements of mixed and displacement type. Numerical examples were solved using both the mixed beam and plate elements for predicting a structure's natural frequencies and dynamic response to a variety of forcing functions. The solutions were compared with the available analytical and displacement model solutions. The mixed elements developed have been found to have significant advantages over the conventional displacement elements in the solution of plate type problems. A dramatic saving in computational time is possible without any loss in solution accuracy. With beam type problems, there appears to be no significant advantages in using mixed models.