999 resultados para IRON-SULFUR CLUSTERS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the phosphorus (P) and iron (Fe) fractionation in four cores with anoxic sediments, deposited during the mid-Cretaceous oceanic anoxic event 2 (~94 Ma) and the Paleocene-Eocene thermal maximum (?55 Ma), that were exposed to oxygen after core recovery. Surprisingly, P associated with iron oxyhydroxides (Fe-bound P) was a major P phase in these laminated sediments deposited under euxinic conditions. A significant fraction of total Fe was present as (poorly) crystalline ferric Fe. This fraction increased with increasing storage time of the investigated cores. In carbonate-poor samples, Fe-bound P accounted for up to 99% of total P and its abundance correlated with pyrite contents. In samples with higher CaCO3 contents (>5 wt% in the investigated samples), P was mostly present in authigenic Ca-P minerals, irrespective of pyrite contents. We conclude that the P fractionation in anoxic, carbonate-poor, sediments is strongly affected by pyrite oxidation that occurs when these sediments are exposed to oxygen. Pyrite oxidation produces sulfuric acid and iron oxyhydroxides. The abundance of poorly crystalline Fe oxyhydroxides provides further evidence that these were indeed formed through recent (post-recovery) oxidation rather than in situ tens of millions of years ago. The acid dissolves apatite and the released phosphate is subsequently bound in the freshly formed iron oxyhydroxides. Pyrite oxidation thus leads to a conversion of authigenic Ca-P to Fe-bound P. In more calcareous samples, CaCO3 can act as an effective buffer against acidic dissolution of Ca-P minerals. The results indicate that shielding of sediments from atmospheric oxygen is vital to preserve the in situ P fractionation and to enable a valid reconstruction of marine phosphorus cycling based on sediment records.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Authigenic minerals can form in the water column and sediments of lakes, either abiotically or mediated by biological activity. Such minerals have been used as paleosalinity and paleoproductivity indicators and reflect trophic state and early diagenetic conditions. They are also considered potential indicators of past and perhaps ongoing microbial activity within sediments. Authigenic concretions, including vivianite, were described in late glacial sediments of Laguna Potrok Aike, a maar lake in southernmost Argentina. Occurrence of iron phosphate implies specific phosphorus sorption behavior and a reducing environment, with methane present. Because organic matter content in these sediments was generally low during glacial times, there must have been alternative sources of phosphorus and biogenic methane. Identifying these sources can help define past trophic state of the lake and diagenetic processes in the sediments. We used scanning electron microscopy, phosphorus speciation in bulk sediment, pore water analyses, in situ ATP measurements, microbial cell counts, and measurements of methane content and its carbon isotope composition (d13C CH4) to identify components of and processes in the sediment. The multiple approaches indicated that volcanic materials in the catchment are important suppliers of iron, sulfur and phosphorus. These elements influence primary productivity and play a role in microbial metabolism during early diagenesis. Authigenic processes led to the formation of pyrite framboids and revealed sulfate reduction. Anaerobic oxidation of methane and shifts in pore water ion concentration indicated microbial influence with depth. This study documents the presence of active microbes within the sediments and their relationship to changing environmental conditions. It also illustrates the substantial role played by microbes in the formation of Laguna Potrok Aike concretions. Thus, authigenic minerals can be used as biosignatures in these late Pleistocene maar sediments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high-resolution geochemical record of a 120 cm black shale interval deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox conditions. High contents of organic matter, sulfur and redox-sensitive trace metals (Cd, Mo, V, Zn), as well as continuous lamination, point to deposition under consistently oxygen-free and largely sulfidic bottom water conditions. However, rapid and cyclic changes in deep ocean redox are documented by short-term (~15-20 ka) intervals with decreased total organic carbon (TOC), S and redox-sensitive trace metal contents, and in particular pronounced phosphorus peaks (up to 2.5 wt% P) associated with elevated Fe oxide contents. Sequential iron and phosphate extractions confirm that P is dominantly bound to iron oxides and incorporated into authigenic apatite. Preservation of this Fe-P coupling in an otherwise sulfidic depositional environment (as indicated by Fe speciation and high amounts of sulfurized organic matter) may be unexpected, and provides evidence for temporarily non-sulfidic bottom waters. However, there is no evidence for deposition under oxic conditions. Instead, sulfidic conditions were punctuated by periods of anoxic, non-sulfidic bottom waters. During these periods, phosphate was effectively scavenged during precipitation of iron (oxyhydr)oxides in the upper water column, and was subsequently deposited and largely preserved at the sea floor. After ~15-25 ka, sulfidic bottom water conditions were re-established, leading to the initial precipitation of CdS, ZnS and pyrite. Subsequently, increasing concentrations of H2S in the water column led to extensive formation of sulfurized organic matter, which effectively scavenged particle-reactive Mo complexes (thiomolybdates). At Site 1261, sulfidic bottom waters lasted for ?90-100 ka, followed by another period of anoxic, non-sulfidic conditions lasting for ~15-20 ka. The observed cyclicity at the lower end of the redox scale may have been triggered by repeated incursions of more oxygenated surface- to mid-waters from the South Atlantic resulting in a lowering of the oxic-anoxic chemocline in the water column. Alternatively, sea water sulfate might have been stripped by long-lasting high rates of sulfate reduction, removing the ultimate source for HS**- production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La chicouté (Rubus chamaemorus L.) pousse naturellement dans les tourbières ombrotrophes. La culture de la chicouté dans les tourbières en fin d’exploitation serait très intéressante afin de maintenir des activités économiques sur ces sites ainsi que d’améliorer la disponibilité de ce petit fruit pour une future commercialisation. L’implantation de cette culture fait toutefois face à certains problèmes tels la faible survie des boutures au cours de la première année et un rendement fruitier très variable. Des essais de fertilisation et d’application d’auxine ont été réalisés pour augmenter la production de racines sur les boutures de rhizome au moment de la plantation afin de réduire leur mortalité. La fertilisation a permis d’augmenter la longueur des racines, mais seulement à la fin de la saison. Les fertilisants ont également stimulé la croissance des plants. Par contre, les concentrations d’auxine utilisées ont entraîné une très forte mortalité des boutures de chicouté. Aucun de ces traitements n’a permis d’augmenter la survie des boutures lors de la plantation. Afin de mieux comprendre les limitations nutritives liées aux faibles rendements fruitiers, nous avons utilisé une analyse compositionnelle (CND) nous permettant d’identifier les débalancements nutritifs. Cette analyse a montré que les parcelles moins productives sont caractérisées par une concentration foliaire plus élevée en manganèse, fer, soufre et cuivre. Les résultats de ce projet de maîtrise vont permettre d’améliorer la régie de fertilisation lors de la plantation de la chicouté en tourbière résiduelle, mais d’autres recherches doivent être menées afin de réduire la mortalité des boutures lors de la plantation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organic carbon-rich shales deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 were drilled during ODP Leg 207 at Demerara Rise. We present integrated high-resolution geochemical records of core intervals from ODP Sites 1259 and 1261 both from nannofossil biozone CC14. Our results reveal systematic variations in marine and detrital sediment contribution, depositional processes, and bottom water redox conditions during black shale formation at two locations on Demerara Rise in different paleo-water depths. A combination of redox proxies (Fe/S, P/Al, C/P, redox-sensitive/sulfide-forming trace metals Mn, Cd, Mo, Ni, V, Zn) and other analytical approaches (bulk sediment composition, P speciation, electron microscopy, X-ray diffraction) evidence anoxic to sulfidic bottom water and sediment conditions throughout the deposition of black shale. These extreme redox conditions persisted and were periodically punctuated by short-termed periods with less reducing bottom waters irrespective of paleo-water depth. Sediment supply at both sites was generally dominated by marine material (carbonate, organic matter, opal) although relationships of detrital proxies as well as glauconitic horizons support some influence of turbidites, winnowing bottom currents and/or variable detritus sources, along with less reducing bottom water at the proposed shallower location (ODP Site 1259). At Site 1261, located at greater paleo-depth, redox fluctuations were more regular, and steady hemipelagic sedimentation sustained the development of mostly undisturbed lamination in the sedimentary record. Strong similarities of the studied deposits exist with the stratigraphic older Cenomanian-Turonian OAE2 black shale sections at Demerara Rise, suggesting that the primary mechanisms controlling continental supply and ocean redox state were time-invariant and kept the western equatorial Atlantic margin widely anoxic over millions of years.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of sulfur vapor pressure in preparing the FeS2 films has been discussed and some incongruous views about sulfur pressure have been clarified in this paper based on experimental results and theoretical analysis. It is shown that lower sulfur pressures than the saturation value only result in poorer crystallization and worse performances, and in other words the FeS2 films could be optimized through improving the sulfur pressure till the saturation point. However for a certain temperature the sulfur pressure is limited by its saturated vapor pressure, and further increase of the sulfur quantity reacted with Fe films has little influence on the structure and properties of the pyrite films. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microstructures in iron- and sulphur-doped InP crystals were studied using both electron microscopy and electron diffraction. A modulated structure has been found in S-doped InP crystal, where the commensurate modulations corresponded to periodicities of 0.68 nm and 0.7 nm in real space and were related to the reflections of the cubic lattice in [111] and [113BAR] directions; they were indexed as q111* = 1/2(a* + b* + c*) and q113BAR* = 1/4(-a* - b* + 3c*), respectively. Single atomic layers of iron precipitate were observed, with preferred orientations along which precipitates are formed. Simulated calculations by means of the dynamical theory of electron diffraction using models for the precipitate structure were in good agreement with our experimental results. The relation between the modulated structure and the precipitates is also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-resolution optical and ultraviolet (UV) spectra of two B-type post-asymptotic giant branch (post-AGB) stars in globular clusters, Barnard29 in M13 and ROA5701 in ?Cen, have been analysed using model atmosphere techniques. The optical spectra have been obtained with FEROS on the ESO 2.2-m telescope and the 2d-Coudé spectrograph on the 2.7-m McDonald telescope, while the UV observations are from the Goddard high-resolution spectrograph on the Hubble Space Telescope (HST). Abundances of light elements (C, N, O, Mg, Al and S) plus Fe have been determined from the optical spectra, while the UV data provide additional Fe abundance estimates from FeIII absorption lines in the 1875-1900 Å wavelength region. A general metal underabundance relative to young B-type stars is found for both Barnard29 and ROA5701. These results are consistent with the metallicities of the respective clusters, as well as with previous studies of the objects. The derived abundance patterns suggest that the stars have not undergone a gas-dust separation, contrary to previous suggestions, although they may have evolved from the AGB before the onset of the third dredge-up. However, the Fe abundances derived from the HST spectra are lower than those expected from the metallicities of the respective clusters, by 0.5 dex for Barnard29 and 0.8 dex for ROA5701. A similar systematic underabundance is also found for other B-type stars in environments of known metallicity, such as the Magellanic Clouds. These results indicate that the FeIII UV lines may yield abundance values which are systematically too low by typically 0.6 dex and hence such estimates should be treated with caution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High spatial resolution vertical profiles of pore-water chemistry have been obtained for a peatland using diffusive equilibrium in thin films (DET) gel probes. Comparison of DET pore-water data with more traditional depth-specific sampling shows good agreement and the DET profiling method is less invasive and less likely to induce mixing of pore-waters. Chloride mass balances as water tables fell in the early summer indicate that evaporative concentration dominates and there is negligible lateral flow in the peat. Lack of lateral flow allows element budgets for the same site at different times to be compared. The high spatial resolution of sampling also enables gradients to be observed that permit calculations of vertical fluxes. Sulfate concentrations fall at two sites with net rates of 1.5 and 5.0nmol cm− 3 day− 1, likely due to a dominance of bacterial sulfate reduction, while a third site showed a net gain in sulfate due to oxidation of sulfur over the study period at an average rate of 3.4nmol cm− 3 day− 1. Behaviour of iron is closely coupled to that of sulfur; there is net removal of iron at the two sites where sulfate reduction dominates and addition of iron where oxidation dominates. The profiles demonstrate that, in addition to strong vertical redox related chemical changes, there is significant spatial heterogeneity. Whilst overall there is evidence for net reduction of sulfate within the peatland pore-waters, this can be reversed, at least temporarily, during periods of drought when sulfide oxidation with resulting acid production predominates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular dynamics simulation was employed to study the atomic interactions in titanium carbides and iron matrix containing carbon and titanium, which are significant for understanding the formation of titanium carbide cluster during precipitate process. The atoms trajectory and diffusion coefficients of carbon in titanium carbide were analyzed to provide a vacancy-exchanging mechanism and clarify the carbon concentration dependence of carbon diffusion in titanium carbide. The dependence of the formation of titanium carbide cluster in iron matrix on carbon was determined from the study of atoms diffusivity, cluster formation and formation energy of titanium carbide cluster. The simulation results provided insight into the carbon diffusion process and improved the understanding of the formation of titanium carbide cluster.