987 resultados para ION BINDING


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reaction center from Rhodobacter sphaeroides uses light energy for the reduction and protonation of a quinone molecule, QB. This process involves the transfer of two protons from the aqueous solution to the protein-bound QB molecule. The second proton, H+(2), is supplied to QB by Glu-L212, an internal residue protonated in response to formation of QA− and QB−. In this work, the pathway for H+(2) to Glu-L212 was studied by measuring the effects of divalent metal ion binding on the protonation of Glu-L212, which was assayed by two types of processes. One was proton uptake from solution after the one-electron reduction of QA (DQA→D+QA−) and QB (DQB→D+QB−), studied by using pH-sensitive dyes. The other was the electron transfer kAB(1) (QA−QB→QAQB−). At pH 8.5, binding of Zn2+, Cd2+, or Ni2+ reduced the rates of proton uptake upon QA− and QB− formation as well as kAB(1) by ≈an order of magnitude, resulting in similar final values, indicating that there is a common rate-limiting step. Because D+QA− is formed 105-fold faster than the induced proton uptake, the observed rate decrease must be caused by an inhibition of the proton transfer. The Glu-L212→Gln mutant reaction centers displayed greatly reduced amplitudes of proton uptake and exhibited no changes in rates of proton uptake or electron transfer upon Zn2+ binding. Therefore, metal binding specifically decreased the rate of proton transfer to Glu-L212, because the observed rates were decreased only when proton uptake by Glu-L212 was required. The entry point for the second proton H+(2) was thus identified to be the same as for the first proton H+(1), close to the metal binding region Asp-H124, His-H126, and His-H128.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The observation of light metal ions in nucleic acids crystals is generally a fortuitous event. Sodium ions in particular are notoriously difficult to detect because their X-ray scattering contributions are virtually identical to those of water and Na+…O distances are only slightly shorter than strong hydrogen bonds between well-ordered water molecules. We demonstrate here that replacement of Na+ by K+, Rb+ or Cs+ and precise measurements of anomalous differences in intensities provide a particularly sensitive method for detecting alkali metal ion-binding sites in nucleic acid crystals. Not only can alkali metal ions be readily located in such structures, but the presence of Rb+ or Cs+ also allows structure determination by the single wavelength anomalous diffraction technique. Besides allowing identification of high occupancy binding sites, the combination of high resolution and anomalous diffraction data established here can also pinpoint binding sites that feature only partial occupancy. Conversely, high resolution of the data alone does not necessarily allow differentiation between water and partially ordered metal ions, as demonstrated with the crystal structure of a DNA duplex determined to a resolution of 0.6 Å.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lead(II)-induced cleavage can be used as a tool to probe conformational changes in RNA. In this report, we have investigated the conformation of M1 RNA, the catalytic subunit of Escherichia coli RNase P, by studying the lead(II)-induced cleavage pattern in the presence of various divalent metal ions. Our data suggest that the overall conformation of M1 RNA is very similar in the presence of Mg2+, Mn2+, Ca2+, Sr2+ and Ba2+, while it is changed compared to the Mg2+-induced conformation in the presence of other divalent metal ions, Cd2+ for example. We also observed that correct folding of some M1 RNA domains is promoted by Pb2+, while folding of other domain(s) requires the additional presence of other divalent metal ions, cobalt(III) hexamine or spermidine. Based on the suppression of Pb2+ cleavage at increasing concentrations of various divalent metal ions, our findings suggest that different divalent metal ions bind with different affinities to M1 RNA as well as to an RNase P hairpin–loop substrate and yeast tRNAPhe. We suggest that this approach can be used to obtain information about the relative binding strength for different divalent metal ions to RNA in general, as well as to specific RNA divalent metal ion binding sites. Of those studied in this report, Mn2+ is generally among the strongest RNA binders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Gouy-Chapman-Stern model has been developed for the computation of surface electrical potential (ψ0) of plant cell membranes in response to ionic solutes. The present model is a modification of an earlier version developed to compute the sorption of ions by wheat (Triticum aestivum L. cv Scout 66) root plasma membranes. A single set of model parameters generates values for ψ0 that correlate highly with published ζ potentials of protoplasts and plasma membrane vesicles from diverse plant sources. The model assumes ion binding to a negatively charged site (R− = 0.3074 μmol m−2) and to a neutral site (P0 = 2.4 μmol m−2) according to the reactions R− + IΖ ⇌ RIΖ−1 and P0 + IΖ ⇌ PIΖ, where IΖ represents an ion of charge Ζ. Binding constants for the negative site are 21,500 m−1 for H+, 20,000 m−1 for Al3+, 2,200 m−1 for La3+, 30 m−1 for Ca2+ and Mg2+, and 1 m−1 for Na+ and K+. Binding constants for the neutral site are 1/180 the value for binding to the negative site. Ion activities at the membrane surface, computed on the basis of ψ0, appear to determine many aspects of plant-mineral interactions, including mineral nutrition and the induction and alleviation of mineral toxicities, according to previous and ongoing studies. A computer program with instructions for the computation of ψ0, ion binding, ion concentrations, and ion activities at membrane surfaces may be requested from the authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phosphoglucomutase (PGM) catalyzes the interconversion of glucose (Glc)-1- and Glc-6-phosphate in the synthesis and consumption of sucrose. We isolated two maize (Zea mays L.) cDNAs that encode PGM with 98.5% identity in their deduced amino acid sequence. Southern-blot analysis with genomic DNA from lines with different Pgm1 and Pgm2 genotypes suggested that the cDNAs encode the two known cytosolic PGM isozymes, PGM1 and PGM2. The cytosolic PGMs of maize are distinct from a plastidic PGM of spinach (Spinacia oleracea). The deduced amino acid sequences of the cytosolic PGMs contain the conserved phosphate-transfer catalytic center and the metal-ion-binding site of known prokaryotic and eukaryotic PGMs. PGM mRNA was detectable by RNA-blot analysis in all tissues and organs examined except silk. A reduction in PGM mRNA accumulation was detected in roots deprived of O2 for 24 h, along with reduced synthesis of a PGM identified as a 67-kD phosphoprotein on two-dimensional gels. Therefore, PGM is not one of the so-called “anaerobic polypeptides.” Nevertheless, the specific activity of PGM was not significantly affected in roots deprived of O2 for 24 h. We propose that PGM is a stable protein and that existing levels are sufficient to maintain the flux of Glc-1-phosphate into glycolysis under O2 deprivation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phenomenon of Manning-Oosawa counterion condensation is given an explicit statistical mechanical and qualitative basis via a dressed polyelectrolyte formalism in connection with the topology of the electrostatic free-energy surface and is derived explicitly in terms of the adsorption excess of ions about the polyion via the nonlinear Poisson-Boltzmann equation. The approach is closely analogous to the theory of ion binding in micelles. Our results not only elucidate a Poisson-Boltzmann analysis, which shows that a fraction of the counterions lie within a finite volume around the polyion even if the volume of the system tends towards infinity, but also provide a direct link between Manning's theta-the number of condensed counterions for each polyion site-and a statistical thermodynamic quantity, namely, the adsorption excess per monomer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have used capacitance measurements with a 1-microsecond voltage clamp technique to probe electrogenic ion-transporter interactions in giant excised membrane patches. The hydrophobic ion dipicrylamine was used to test model predictions for a simple charge-moving reaction. The voltage and frequency dependencies of the apparent dipicrylamine-induced capacitance, monitored by 1-mV sinusoidal perturbations, correspond to single charges moving across 76% of the membrane field at a rate of 9500 s-1 at 0 mV. For the cardiac Na,K pump, the combined presence of cytoplasmic ATP and sodium induces an increase of apparent membrane capacitance which requires the presence of extracellular sodium. The dependencies of capacitance changes on frequency, voltage, ATP, and sodium verify that phosphorylation enables a slow, 300- to 900-s-1, pump transition (the E1-E2 conformational change), which in turn enables fast, electrogenic, extracellular sodium binding reactions. For the GAT1 (gamma-aminobutyric acid,Na,Cl) cotransporter, expressed in Xenopus oocyte membrane, we find that chloride binding from the cytoplasmic side, and probably sodium binding from the extracellular side, results in a decrease of membrane capacitance monitored with 1- to 50-kHz perturbation frequencies. Evidently, ion binding by the GAT1 transporter suppresses an intrinsic fast charge movement which may originate from a mobility of charged residues of the transporter binding sites. The results demonstrate that fast capacitance measurements can provide new insight into electrogenic processes closely associated with ion binding by membrane transporters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metal ion binding properties of the immunosuppressant drug cyclosporin A have been investigated. Complexation studies in acetonitrile solution using H-1 NMR and CD spectroscopy yielded 1:1 metal-peptide binding constants (log(10)K) for potassium(l), < 1, magnesium(II), 4.8 +/- 0.2. and calcium(II), 5.0 +/- 1.0. The interaction of copper(II) with cyclosporin A in methanol was investigated with UV/visible and electron paramagnetic resonance (EPR) spectroscopy. No complexation of copper(II) was observed in neutral solution. In the presence of base, monomeric copper(II) complexes were detected. These results support the possibility that cyclosporin A has ionophoric properties for biologically important essential metal ions. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, we review the current state of knowledge concerning the physical and chemical properties of the eumelanin pigment. We examine properties related to its photoprotective functionality, and draw the crucial link between fundamental molecular structure and observable macroscopic behaviour. Where necessary, we also briefly review certain aspects of the pheomelanin literature to draw relevant comparison. A full understanding of melanin function, and indeed its role in retarding or promoting the disease state, can only be obtained through a full mapping of key structure-property relationships in the main pigment types. We are engaged in such an endeavor for the case of eumelanin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study of several chemical and electrochemical factors which affect the behaviour of embedded steel in cement pastes and concrete has been made. The effects of internal and external sources of chloride ions on the pore solution chemistry of Portland cement pastes, with and without additions of anodic corrosion inhibitors, have been studied using a pore solution expression device which has enabled samples of pore solution to be expressed from hardened cement pastes and analysed for various ionic species. Samples of pure alite and tricalcium aluminate have been prepared and characterised with respect to morphology, free lime content and fineness. Kinetics of diffusion of chloride ions in hardened pastes of alite and alite blended with tricalcium aluminate have been investigated and an activation energy obtained for the diffusion process in alite. The pore structures of the hardened pastes and the chloride ion binding capacity of alite have also been determined. Concrete cylinders containing embedded steel with four different surface conditions were exposed to various environments. The electrochemical behaviour of the steel was monitored during the period of exposure by means of rest potential measurements and the steel corrosion products analysed before and after being embedded. An examination was made of the nature of the interfacial zones produced between the embedded steel and cement. Rest potential measurements were monitored for steel embedded in alite paste in the presence of chloride ions and cement paste containing various levels of inhibitors in combination with chloride ions. In the latter case the results were supported by polarisation resistance determinations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This chapter describes the sites and mechanisms of action of the major groups of microbicides, relating their physical and chemical properties to interactions with microbial structures. It considers the physical, cellular and molecular methods for studying the mechanisms of action of chemical microbicides. These range from the uptake, binding and penetration of microbial cells, to the interaction with microbial structures, including the cell wall, membrane, nucleic acids, cytoplasm and enzymes. Key features of the mechanisms of action of the major groups of microbicides are described covering oxidizing agents, alkylating agents, metal ion-binding agents, nucleic acid-binding agents, protein denaturants and agents that interact with lipids. © 2013 Blackwell Publishing Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A photoactivatable derivative of neurotoxin II from Naja naja oxiana containing a 125I-labeled p-azidosalicylamidoethyl-1,3'-dithiopropyl label at Lys-25 forms a photo-induced cross-link with the delta subunit of the membrane-bound Torpedo californica nicotinic acetylcholine receptor (AChR). The cross-linked radioactive receptor peptide was isolated by reverse-phase HPLC after tryptic digestion of the labeled delta subunit. The sequence of this peptide, delta-(260-277), and the position of the label at Ala-268 were established by matrix-assisted laser-desorption-ionization mass spectrometry based on the molecular mass and on post-source decay fragment analysis. With the known dimensions of the AChR molecule, of the photolabel, and of alpha-neurotoxin, finding the cross-link at delta Ala-268 (located in the upper part of the channel-forming transmembrane helix M2) means that the center of the alpha-neurotoxin binding site is situated at least approximately 40 A from the extracellular surface of the AChR, proximal to the channel axis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigated the relative contribution of ion-trapping, microsomal binding, and distribution of unbound drug as determinants in the hepatic retention of basic drugs in the isolated perfused rat liver. The ionophore monensin was used to abolish the vesicular proton gradient and thus allow an estimation of ion-trapping by acidic hepatic vesicles of cationic drugs. In vitro microsomal studies were used to independently estimate microsomal binding and metabolism. Hepatic vesicular ion-trapping, intrinsic elimination clearance, permeability-surface area product, and intracellular binding were derived using a physiologically based pharmacokinetic model. Modeling showed that the ion-trapping was significantly lower after monensin treatment for atenolol and propranolol, but not for antipyrine. However, no changes induced by monensin treatment were observed in intrinsic clearance, permeability, or binding for the three model drugs. Monensin did not affect binding or metabolic activity in vitro for the drugs. The observed ion-trapping was similar to theoretical values estimated using the pHs and fractional volumes of the acidic vesicles and the pK(a) values of drugs. Lipophilicity and pK(a) determined hepatic drug retention: a drug with low pK(a) and low lipophilicity (e.g., antipyrine) distributes as unbound drug, a drug with high pK(a) and low lipophilicity (e.g., atenolol) by ion-trapping, and a drug with a high pK(a) and high lipophilicity (e.g., propranolol) is retained by ion-trapping and intracellular binding. In conclusion, monensin inhibits the ion-trapping of high pK(a) basic drugs, leading to a reduction in hepatic retention but with no effect on hepatic drug extraction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The binding of [3H]inositol hexakisphosphate ([3H] InsP6) to rat cerebellar membranes has been characterized with the objective of establishing the role, if any, of a membrane protein receptor. In the presence of EDTA, we have previously identified an InsP6-binding site with a capacity of approximately 20 pmol/mg protein (Hawkins, P. T., Reynolds, D. J. M., Poyner, D. R., and Hanley, M. R. (1990) Biochem. Biophys. Res. Commun. 167, 819-827). However, in the presence of 1 mM Mg2+, the capacity of [3H]InsP6 binding to membranes was increased approximately 9-fold. This enhancing effect of Mg2+ was reversed by addition of 10 microM of several cation chelators, suggesting that the increased binding required trace quantities of other metal cations. This is supported by experiments where it was possible to saturate binding by addition of excess membranes, despite not significantly depleting radioligand, pointing to removal of some other factor. Removal of endogenous cations from the binding assay by pretreatment with chelex resin also prevents the Mg(2+)-induced potentiation. Consideration of the specificity of the chelators able to abolish this potentiation suggested involvement of Fe3+ or Al3+. Both these ions (but not several others) were able to increase [3H]InsP6 binding to chelex-pretreated membranes at concentrations of 1 microM. It is possible to demonstrate synergy between Fe3+ and Mg2+ under these conditions. We propose that [3H]InsP6 may interact with membranes through non-protein recognition possibly via phospholipids, in a manner dependent upon trace metals. The implications of this for InsP6 biology are considered.