965 resultados para INTRAMOLECULAR CHARGE-TRANSFER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intermolecular electron-transfer reactions have a crucial role in biology, solution chemistry and electrochemistry. The first step of such reactions is the expulsion of the electron to the solvent, whose mechanism is determined by the structure and dynamical response of the latter. Here we visualize the electron transfer to water using ultrafast fluorescence spectroscopy with polychromatic detection from the ultraviolet to the visible region, upon photo-excitation of the so-called charge transfer to solvent states of aqueous iodide. The initial emission is short lived (~60 fs) and it relaxes to a broad distribution of lower-energy charge transfer to solvent states upon rearrangement of the solvent cage. This distribution reflects the inhomogeneous character of the solvent cage around iodide. Electron ejection occurs from the relaxed charge transfer to solvent states with lifetimes of 100–400 fs that increase with decreasing emission energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In astrophysical regimes where the collisional excitation of hydrogen atoms is relevant, the cross-sections for the interactions of hydrogen atoms with electrons and protons are necessary for calculating line profiles and intensities. In particular, at relative velocities exceeding ∼1000 km s−1, collisional excitation by protons dominates over that by electrons. Surprisingly, the H–H+ cross-sections at these velocities do not exist for atomic levels of n≥ 4, forcing researchers to utilize extrapolation via inaccurate scaling laws. In this study, we present a faster and improved algorithm for computing cross-sections for the H–H+ collisional system, including excitation and charge transfer to the n≥ 2 levels of the hydrogen atom. We develop a code named BDSCX which directly solves the Schrödinger equation with variable (but non-adaptive) resolution and utilizes a hybrid spatial-Fourier grid. Our novel hybrid grid reduces the number of grid points needed from ∼4000n6 (for a ‘brute force’, Cartesian grid) to ∼2000n4 and speeds up the computation by a factor of ∼50 for calculations going up to n= 4. We present (l, m)-resolved results for charge transfer and excitation final states for n= 2–4 and for projectile energies of 5–80 keV, as well as fitting functions for the cross-sections. The ability to accurately compute H–H+ cross-sections to n= 4 allows us to calculate the Balmer decrement, the ratio of Hα to Hβ line intensities. We find that the Balmer decrement starts to increase beyond its largely constant value of 2–3 below 10 keV, reaching values of 4–5 at 5 keV, thus complicating its use as a diagnostic of dust extinction when fast (∼1000 km s−1) shocks are impinging upon the ambient interstellar medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA can serve as a versatile scaffold for chromophore assemblies. For example, light-harvesting antennae have been realized by incorporating phenanthrene and pyrene building blocks into DNA strands. It was shown that by exciting at 320 nm (absorption of phenanthrene), an emission at 450 nm is observed which corresponds to a phenanthrene-pyrene exciplex. The more phenanthrenes are added into the DNA duplex, the higher is the fluorescence intensity with no significant change in quantum yield. This shows that phenanthrene acts as a donor and efficiently transfers the excitation energy to the pyrene. Up to now, the mechanism of this energy transfer and exciplex formation is not known. Therefore, we first aim at studying the photo-cycle of such DNA assemblies through transient absorption spectroscopy. Based on the results, we will explore ways to manipulate the energy transfer by application of intense THz fields. Ground as well as excited state Stark effect dynamics will be investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore charge migration in DNA, advancing two distinct mechanisms of charge separation in a donor (d)–bridge ({Bj})–acceptor (a) system, where {Bj} = B1,B2, … , BN are the N-specific adjacent bases of B-DNA: (i) two-center unistep superexchange induced charge transfer, d*{Bj}a → d∓{Bj}a±, and (ii) multistep charge transport involves charge injection from d* (or d+) to {Bj}, charge hopping within {Bj}, and charge trapping by a. For off-resonance coupling, mechanism i prevails with the charge separation rate and yield exhibiting an exponential dependence ∝ exp(−βR) on the d-a distance (R). Resonance coupling results in mechanism ii with the charge separation lifetime τ ∝ Nη and yield Y ≃ (1 + δ̄ Nη)−1 exhibiting a weak (algebraic) N and distance dependence. The power parameter η is determined by charge hopping random walk. Energetic control of the charge migration mechanism is exerted by the energetics of the ion pair state d∓B1±B2 … BNa relative to the electronically excited donor doorway state d*B1B2 … BNa. The realization of charge separation via superexchange or hopping is determined by the base sequence within the bridge. Our energetic–dynamic relations, in conjunction with the energetic data for d*/d− and for B/B+, determine the realization of the two distinct mechanisms in different hole donor systems, establishing the conditions for “chemistry at a distance” after charge transport in DNA. The energetic control of the charge migration mechanisms attained by the sequence specificity of the bridge is universal for large molecular-scale systems, for proteins, and for DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intramolecular electron transfer in azurin in water and deuterium oxide has been studied over a broad temperature range. The kinetic deuterium isotope effect, kH/kD, is smaller than unity (0.7 at 298 K), primarily caused by the different activation entropies in water (−56.5 J K−1 mol−1) and in deuterium oxide (−35.7 J K−1 mol−1). This difference suggests a role for distinct protein solvation in the two media, which is supported by the results of voltammetric measurements: the reduction potential (E0′) of Cu2+/+ at 298 K is 10 mV more positive in D2O than in H2O. The temperature dependence of E0′ is also different, yielding entropy changes of −57 J K−1 mol−1 in water and −84 J K−1 mol−1 in deuterium oxide. The driving force difference of 10 mV is in keeping with the kinetic isotope effect, but the contribution to ΔS‡ from the temperature dependence of E0′ is positive rather than negative. Isotope effects are, however, also inherent in the nuclear reorganization Gibbs free energy and in the tunneling factor for the electron transfer process. A slightly larger thermal protein expansion in H2O than in D2O (0.001 nm K−1) is sufficient both to account for the activation entropy difference and to compensate for the different temperature dependencies of E0′. Thus, differences in driving force and thermal expansion appear as the most straightforward rationale for the observed isotope effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma–atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w− 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the role played by cyclic topology on charge-transfer properties of recently synthesized π -conjugated molecules, namely the set of [n]cycloparaphenylene compounds, with n the number of phenylene rings forming the curved nanoring. We estimate the charge-transfer rates for holes and electrons migration within the array of molecules in their crystalline state. The theoretical calculations suggest that increasing the size of the system would help to obtain higher hole and electron charge-transfer rates and that these materials might show an ambipolar behavior in real samples, independently of the different mode of packing followed by the [6]cycloparaphenylene and [12]cycloparaphenylene cases studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metal-to-metal charge transfer (MMCT) transitions of a series of Class II mixed valence dinuclear complexes bearing cyano bridging ligands may be varied systematically by variations to either the hexacyanometallate(II) donor or Co-III acceptor moieties. Specifically, the new dinuclear species trans-[(LCoNCFe)-Co-14S(CN)(5)](-) (L-14S = 6-methyl-1,11-diaza-4,8-dithia- cyclotetradecane-6-amine) and trans-[(LCoNCRu)-Co-14(CN)(5)]-(L-14 = 6-methyl-1,4,8,11-tetraazacyclotetradecane-6-amine) have been prepared and their spectroscopic and electrochemical properties are compared with the relative trans-[(LCoNCFe)-Co-14(CN)(5)](-). The crystal structures of Na{trans-[(LCoNCFe)-Co-14S(CN)(5)]}.51/2H(2)O.1/2EtOH, Na{trans-[(LCoNCRu)-Co-14(CN)(5)]}.3H(2)O and Na{trans-[(LCoNCRu)-Co-14(CN)(5)]}.8H(2)O are also reported. The ensuing changes to the MMCT energy have been examined within the framework of Hush theory, and it was found that the free energy change between the redox isomers was the dominant effect in altering the energy of the MMCT transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visible pump-probe spectroscopy has been used to identify and characterize short-lived metal-to-metal charge transfer (MMCT) excited states in a group of cyano-bridged mixed-valence complexes of the formula [(LCoNCMII)-N-III(CN)(5)](-), where L is a pentadentate macrocyclic pentaamine (L-14) or triamine-dithiaether (L-14S) and M is Fe or Ru. Nanosecond pump-probe spectroscopy on frozen solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at 11 K enabled the construction of difference transient absorption spectra that featured a rise in absorbance in the region of 350-400 nm consistent with the generation of the ferricyanide chromophore of the photoexcited complex. The MMCT excited state of the Ru analogue [(LCoNCRuII)-Co-14-N-III(CN)(5)](-) was too short-lived to allow its detection. Femtosecond pump-probe spectroscopy on aqueous solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at room temperature enabled the lifetimes of their Co-II-Fe-III MMCT excited states to be determined as 0.8 and 1.3 ps, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfite-oxidizing molybdoenzymes convert the highly reactive and therefore toxic sulfite to sulfate and have been identified in insects, animals, plants, and bacteria. Although the well studied enzymes from higher animals serve to detoxify sulfite that arises from the catabolism of sulfur-containing amino acids, the bacterial enzymes have a central role in converting sulfite formed during dissimilatory oxidation of reduced sulfur compounds. Here we describe the structure of the Starkeya novella sulfite dehydrogenase, a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit, that reveals the molecular mechanism of intramolecular electron transfer in sulfite-oxidizing enzymes. The close approach of the two redox centers in the protein complex (Mo-Fe distance 16.6 angstrom) allows for rapid electron transfer via tunnelling or aided by the protein environment. The high resolution structure of the complex has allowed the identification of potential through-bond pathways for electron transfer including a direct link via Arg-55A and/or an aromatic-mediated pathway. A potential site of electron transfer to an external acceptor cytochrome c was also identified on the SorB subunit on the opposite side to the interaction with the catalytic SorA subunit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of pressure and temperature on the energy (E-op) of the metal-to-metal charge transfer (MMCT, Fe-II --> Co-III) transition of the cyano-bridged complexes trans - [(LCoNCFe)-Co-14(CN)(5)](-) and cis-[(LCoNCFe)-Co-14(CN)(5)](-) (where L-14 = 6-methyl-1,4,8,11-tetraazacyclotetradecan-6-amine) were examined. The changes in the redox potentials of the cobalt and iron metal centres with pressure and temperature were also examined and the results interpreted with Marcus Hush theory. The observed redox reaction volumes can mainly be accounted for in terms of localised electrostriction effects. The shifts in E-op due to both pressure and temperature were found to be less than the shifts in the energy difference (E degrees) between the Co-III-Fe-II and Co-II-Fe-III redox isomers. The pressure and temperature dependence of the reorganisational energy, as well as contributions arising from the different spin states of Co-II, are discussed in order to account for this trend. To study the effect of pressure on Co-III electronic absorption bands, a new cyano-bridged complex, trans - [(LCoNCCo)-Co-14(CN)(5)], was prepared and characterised spectroscopically and structurally. X-Ray crystallography revealed this complex to be isostructural with trans -[(LCoNCFe)-Co-14(CN)(5)] center dot 5H(2)O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the role of strong electronic correlations in quasi-two-dimensional organic charge transfer salts such as (BEDT-TTF)(2)X, (BETS)(2)Y, and beta'-[Pd(dmit)(2)](2)Z. We begin by defining minimal models for these materials. It is necessary to identify two classes of material: the first class is strongly dimerized and is described by a half-filled Hubbard model; the second class is not strongly dimerized and is described by a quarter-filled extended Hubbard model. We argue that these models capture the essential physics of these materials. We explore the phase diagram of the half-filled quasi-two-dimensional organic charge transfer salts, focusing on the metallic and superconducting phases. We review work showing that the metallic phase, which has both Fermi liquid and 'bad metal' regimes, is described both quantitatively and qualitatively by dynamical mean field theory (DMFT). The phenomenology of the superconducting state is still a matter of contention. We critically review the experimental situation, focusing on the key experimental results that may distinguish between rival theories of superconductivity, particularly probes of the pairing symmetry and measurements of the superfluid stiffness. We then discuss some strongly correlated theories of superconductivity, in particular the resonating valence bond (RVB) theory of superconductivity. We conclude by discussing some of the major challenges currently facing the field. These include parameterizing minimal models, the evidence for a pseudogap from nuclear magnetic resonance (NMR) experiments, superconductors with low critical temperatures and extremely small superfluid stiffnesses, the possible spin- liquid states in kappa-(ET)(2)Cu-2(CN)(3) and beta'-[Pd(dmit)(2)](2)Z, and the need for high quality large single crystals.