889 resultados para INHALATION EXPOSURE
Resumo:
Aflatoxin B1 (AFB1) has been recognized to produce cancer in human liver. In addition, epidemiological and laboratory studies demonstrated that the respiratory system was a target for AFB1. Exposure occurs predominantly through the food chain, but inhalation represents an additional route of exposure. The present study aimed to examine AFB1 exposure among poultry workers in Portugal. Blood samples were collected from a total of 31 poultry workers from six poultry farms. In addition, a control group (n = 30) was included comprised of workers who undertook administrative tasks. Measurement of AFB1 in serum was performed by enzyme-linked immunosorbent assay (ELISA). For examining fungi contamination, air samples were collected through an impaction method. Air sampling was obtained in pavilion interior and outside the premises, since this was the place regarded as the reference location. Using molecular methods, toxicogenic strains (aflatoxin-producing) were investigated within the group of species belonging to Aspergillus flavus complex. Eighteen poultry workers (59%) had detectable levels of AFB1 with values ranging from <1 ng/ml to4.23 ng/ml and with a mean value of 2 ± 0.98ng/ml. AFB1 was not detected in the serum sampled from any of the controls. Aspergillus flavus was the fungal species third most frequently found in the indoor air samples analyzed (7.2%) and was the most frequently isolated species in air samples containing only Aspergillus genus (74.5%). The presence of aflatoxigenic strains was only confirmed in outdoor air samples from one of the units, indicating the presence of a source inside the building in at least one case. Data indicate that AFB1 inhalation represents an additional risk in this occupational setting that needs to be recognized, assessed, and prevented.
Resumo:
Biological factors associated with airbome dust are the most important hazards in pig buildings and include allergenic and/or toxic compounds, as well as infectious agents such as fungi and their metabolites, like mycotoxins. Inhalation of such agents can be a potential occupationai treat. Exposure of workers from swine confinement buildings to respiratory hazards has been reported elsewhere in Europe, Asia and America. Analogous data has not been reported for Portugal and this omission has hindered the development of policies in the area of occupational health and farm safety. Aspergilius versicolor is known as being the major producer of the hepatotoxic and carcinogenic mycotoxin sterigmatocystin. The toxicity of this mycotoxin is manifested primarily in liver and kidney. This study aimed to determine occupational exposure treat due to fungal contamination caused by A. versicolor in seven Portuguese swine.
Resumo:
Although there is an abundance of literature concerning the ingestion of food contaminated with aflatoxin B1 (AFB1), only a small number of studies explore mycotoxin exposure in occupational settings. Taking this into consideration, our study was developed with the intention of elucidating whether there is occupational exposure to AFB1 in Portuguese poultry and swine production facilities. A specific biomarker was used to assess exposure to AFB1. A total of 45 workers (34 from poultry farms; 11 from swine production facilities) participated in this study, providing blood samples. Additionally, a control group (n=30) composed of subjects without any type of contact with agricultural activity was considered. All participants signed a consent form and were provided with the study protocol. Eighteen poultry workers (58.6%) and six workers from the swine production facilities (54.5%) showed detectable levels of AFB1. In the control group, the AFB1 values were all below 1 ng/ml. No significant differences in AFB1 levels in serum between workers from poultry and swine farms were found. Poultry workers, however, showed the highest serum levels and a significant statistical difference between this group and the control group was found. Results suggest that exposure to AFB1 by inhalation occurs in both occupational settings representing an additional risk that needs to be recognised, assessed and prevented.
Resumo:
Certain environmental conditions in animal and plant production have been associated with increased frequency in respiratory illnesses, including asthma, chronic bronchitis, and hypersensitivity pneumonitis, in farmers occupationally exposed in swine production. The aim of this study was to characterize particulate matter (PM) contamination in seven Portuguese swine farms and determine the existence of clinical symptoms associated with asthma and other allergy diseases, utilizing the European Community Respiratory Health Survey questionnaire. Environmental assessments were performed with portable direct-reading equipment, and PM contamination including five different sizes (PM0.5, PM1.0, PM2.5, PM5.0, PM10) was determined. The distribution of particle size showed the same trend in all swine farms, with high concentrations of particles with PM5 and PM10. Results from the questionnaire indicated a trend such that subjects with diagnosis of asthma were exposed to higher concentrations of PM with larger size (PM2.5, PM5, and PM10) while subjects with sneezing, runny nose, or stuffy nose without a cold or flu were exposed to higher concentrations of PM with smaller size (PM0.5 and PM1). Data indicate that inhalation of PM in swine farm workers is associated with increased frequency of respiratory illnesses.
Resumo:
In 1987, the International Agency for Research on Cancer concluded that there was sufficient evidence for carcinogenicity of naturally occurring aflatoxins in humans. Regarding occupational exposure to this chemical agent, farmers and other agricultural workers present a higher risk due to airborne aflatoxin via inhalation of dust. This study was carried out in 7 swine farms located at the district of Lisbon, Portugal. Blood samples were collected from a total of 11 workers. In addition, a control group (n = 25) was included that conducted administrative tasks in an educational institution without any type of agricultural activity. Results obtained suggest that occupational exposure to AFB1 by inhalation occurs and represents an additional risk in this occupational setting that need to be recognized, assessed and, most important, prevented.
Resumo:
Exposure in a hospital setting is normally due to the use of several antineoplastic drugs simultaneously. Nevertheless, the effects of such mixtures at the cell level and on human health in general are unpredictable and unique due to differences in practice of hospital oncology departments, in the number of patients, protection devices available, and the experience and safety procedures of medical staff. Health care workers who prepare or administer hazardous drugs or who work in areas where these drugs are used may be exposed to these agents in the air, on work surfaces, contaminated clothing, medical equipment, patient excreta, and other surfaces. These workers include specially pharmacists, pharmacy technicians, and nursing personnel. Exposures may occur through inhalation resulting from aerosolization of powder or liquid during reconstitution and spillage taking place while preparing or administering to patients, through Cytokinesis-block micronucleus test (CBMN) is extensively used in biomonitoring, since it determines several biomarkers of genotoxicity, such as micronuclei (MN), which are biomarkers of chromosomes breakage or loss, nucleoplasmic bridges (NPB), common biomarkers of chromosome rearrangement, poor repair and/or telomeres fusion, and nuclear buds (NBUD), biomarkers of elimination of amplified DNA.
Resumo:
Present study develops and implements a specific methodology for the assessment of health risks derived from occupational exposure of workers to ionizing radiation in the fertilizer manufacturing industry. Negative effects on the health of exposed workers are identified, according to the types and levels of exposure to which they are subject, namely an increase of the risk of cancer even with long term exposure to low level radiation. Ionizing radiation types, methods and measuring equipment are characterized. The methodology developed in a case study of a phosphate fertilizer industry is applied, assessing occupational exposure to ionizing radiation caused by external radiation and the inhalation of radioactive gases and dust.
Resumo:
The aim of this study is to contribute to the assessment of exposure levels of ultrafine particles (UFP) in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung-deposited alveolar surface area (resulting from exposure to UFP) in a major avenue leading to the town centre during late Spring, as well as in indoor buildings facing it. This study revealed differentiated patterns for week days and weekends, consistent with PM2.5 and PM10 patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels could be directly related with the fluxes of automobile traffic. During a typical week, UFP alveolar deposited surface area varied between 35.0 and 89.2 mu m(2)/cm(3), which is comparable with levels reported for other towns such in Germany and United States. The measured values allowed the determination of the number of UFP per cm(3), which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32-63%) outdoor, which is somewhat lower than levels observed in houses in Ontario.
Resumo:
PURPOSE: Bioaerosols and their constituents, such as endotoxins, are capable of causing an inflammatory reaction at the level of the lung-blood barrier, which becomes more permeable. Thus, it was hypothesized that occupational exposure to bioaerosols can increase leakage of surfactant protein-D (SP-D), a lung-specific protein, into the bloodstream. METHODS: SP-D was determined by ELISA in 316 wastewater workers, 67 garbage collectors, and 395 control subjects. Exposure was assessed with four interview-based indicators and by preliminary endotoxin measurements using the Limulus amoebocyte lysate assay. Influence of exposure on serum SP-D was assessed by multiple linear regression considering smoking, glomerular function, lung diseases, obesity, and other confounders. RESULTS: Overall, mean exposure levels to endotoxins were below 100 EU/m(3). However, special tasks of wastewater workers caused higher endotoxin exposure. SP-D concentration was slightly increased in this occupational group and associated with the occurrence of splashes and contact to raw sewage. No effect was found in garbage collectors. Smoking increased serum SP-D. No clinically relevant correlation between spirometry results and SP-D concentrations appeared. CONCLUSIONS: These results support the hypothesis that inhalation of bioaerosols, even at low concentrations, has a subclinical effect on the lung-blood barrier, the permeability of which increases without associated spirometric changes.
Resumo:
The introduction of engineered nanostructured materials into a rapidly increasing number of industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of (consumer) products. The dynamic development of nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety.In this consensus document from a workshop on in-vitro cell systems for nanoparticle toxicity testing11Workshop on 'In-Vitro Exposure Studies for Toxicity Testing of Engineered Nanoparticles' sponsored by the Association for Aerosol Research (GAeF), 5-6 September 2009, Karlsruhe, Germany. an overview is given of the main issues concerning exposure to airborne nanoparticles, lung physiology, biological mechanisms of (adverse) action, in-vitro cell exposure systems, realistic tissue doses, risk assessment and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanoparticle toxicity. For the investigation of lung toxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they more closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. An important aspect, which is frequently overlooked, is the comparison of typically used in-vitro dose levels with realistic in-vivo nanoparticle doses in the lung. If we consider average ambient urban exposure and occupational exposure at 5mg/m3 (maximum level allowed by Occupational Safety and Health Administration (OSHA)) as the boundaries of human exposure, the corresponding upper-limit range of nanoparticle flux delivered to the lung tissue is 3×10-5-5×10-3μg/h/cm2 of lung tissue and 2-300particles/h/(epithelial) cell. This range can be easily matched and even exceeded by almost all currently available cell exposure systems.The consensus statement includes a set of recommendations for conducting in-vitro cell exposure studies with pulmonary cell systems and identifies urgent needs for future development. As these issues are crucial for the introduction of safe nanomaterials into the marketplace and the living environment, they deserve more attention and more interaction between biologists and aerosol scientists. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.
Resumo:
BACKGROUND Evidence associating exposure to water disinfection by-products with reduced birth weight and altered duration of gestation remains inconclusive. OBJECTIVE We assessed exposure to trihalomethanes (THMs) during pregnancy through different water uses and evaluated the association with birth weight, small for gestational age (SGA), low birth weight (LBW), and preterm delivery. METHODS Mother-child cohorts set up in five Spanish areas during the years 2000-2008 contributed data on water ingestion, showering, bathing, and swimming in pools. We ascertained residential THM levels during pregnancy periods through ad hoc sampling campaigns (828 measurements) and regulatory data (264 measurements), which were modeled and combined with personal water use and uptake factors to estimate personal uptake. We defined outcomes following standard definitions and included 2,158 newborns in the analysis. RESULTS Median residential THM ranged from 5.9 μg/L (Valencia) to 114.7 μg/L (Sabadell), and speciation differed across areas. We estimated that 89% of residential chloroform and 96% of brominated THM uptakes were from showering/bathing. The estimated change of birth weight for a 10% increase in residential uptake was -0.45 g (95% confidence interval: -1.36, 0.45 g) for chloroform and 0.16 g (-1.38, 1.70 g) for brominated THMs. Overall, THMs were not associated with SGA, LBW, or preterm delivery. CONCLUSIONS Despite the high THM levels in some areas and the extensive exposure assessment, results suggest that residential THM exposure during pregnancy driven by inhalation and dermal contact routes is not associated with birth weight, SGA, LBW, or preterm delivery in Spain.
Resumo:
Objectives: Polychlorinated biphenyls (PCBs) are considered probable human carcinogens by the International Agency for Research on Cancer and one congener, PCB126, has been rated as a known human carcinogen. A period-specific job exposure matrix (JEM) was developed for former PCB-exposed capacitor manufacturing workers (n=12,605) (1938-1977). Methods: A detailed exposure assessment for this plant was based on a number of exposure determinants (proximity, degree of contact with PCBs, temperature, ventilation, process control, job mobility). The intensity and frequency of PCB exposures by job for both inhalation and dermal exposures, and additional chemical exposures were reviewed. The JEM was developed in nine steps: (1) all unique jobs (n=1,684) were assessed using (2) defined PCB exposure determinants; (3) the exposure determinants were used to develop exposure profiles; (4) similar exposure profiles were combined into categories having similar PCB exposures; (5) qualitative intensity (high-medium-low-baseline) and frequency (continuous-intermittent) ratings were developed, and (6) used to qualitatively rate inhalation and dermal exposure separately for each category; (7) quantitative intensity ratings based on available air concentrations were developed for inhalation and dermal exposures based on equal importance of both routes of exposure; (8) adjustments were made for overall exposure, and (9) for each category the product of intensity and frequency was calculated, and exposure in the earlier era was weighted. Results: A period-specific JEM modified for two eras of stable PCB exposure conditions. Conclusions: These exposure estimates, derived from a systematic and rigorous use of the exposure determinant data, lead to cumulative PCB exposure-response relationships in the epidemiological cancer mortality and incidence studies of this cohort. [Authors]
Resumo:
Introduction. Agricultural workers are among the professional groups most at risk of developing acute or chronic respiratory problems. Despite this fact, the etiology of these occupational diseases is poorly known, even in important sectors of agriculture such as the crops sector. Cereals can be colonized by a large number of fungal species throughout the plants' growth, but also during grain storage. Some of these fungi deliver toxins that can have a serious impact on human health when they are ingested via wheat products. Although International and European legislation on contaminants in food, including mycotoxins, include measures to ensure protection of public health by setting down the maximum levels for certain contaminants, the risks associated with the inhalation of such molecules during grain handling remains poorly documented. Goal of study. This project's objective was to characterize worker exposure to pathogenic, irritative or allergenic microorganisms and to identify the abiotic or biotic factors that reduce the growth of these microorganisms in crops. Indeed, the proliferation of microorganisms on wheat is dependent on temperature, rainfall and human disturbance (e.g. usage of tillage, addition of fungicides). A change in the concentration of these microorganisms in the substrate will directly result in a change in the concentration of aerosolized particles of the same microorganisms. Therefore, the exposure of worker to bioaérosols will also change. The Vaud region of Switzerland is a perfect region for conduct such a project as weather conditions vary and agricultural land management programs are divers at a small geographic scale. Methods. Bioaerosols and wheat dust have been sampled during wheat harvesting of summer 2010 at 100 sites uniformly distributed in the Vaud region that are representative of the different agriculture practices. Personal exposure has been evaluated for different wheat related activities: harvesting, grain unload, baling straw, the cleaning of harvesters and silos. Aerosols have been sampled at a rate of 2L/min between 15 min to 4 hours (t) on a 5m PVC filter for estimating the total dust inhaled, on gelatine filter for the identification and quantification of molds, and on a 0.45um polycarbonate filter for endotoxin quantification. Altitude, temperature and annual average rainfall were considered for each site. The physical and chemical characteristics of soils were determined using the methods in effect at Sol Council (Nyon). Total dust has been quantified following NIOSH 0500 method. Reactive endotoxine activity has been determined with Limulus Amebocyte Lysate Assay. All molds have been identified by the pyrosequencing of ITS2 amplicons generated from bioaerosol or wheat dust genomic DNA. Results & Conclusions. Our results confirm the previous quantitative data on the worker exposure to wheat dust. In addition, they show that crop workers are systematically exposed to complex mixtures of allergens, irritants or cytotoxic components. The novelty of our study is the systematic detection of molds such as Fusarium - that is a mycotoxins producer - in the bioaerosols. The results are interpreted by taking in account the agriculture practice, the Phosphorus : Carbon : Nitrogen ratio of the soil, the altitude and the average of rainy days per year.
Resumo:
Background: Due to complains of respiratory symptoms of some employees a pharmaceutical company asked in 2008 the occupational medical department of the Institute for Work and Health in Lausanne to evaluate the health status of their workers exposed to Mesalazine powder, which is the active agent of a drug used for the treatment of bowels inflammation. Therefore we examined the 21 workers exposed to Mesalazine powder. Method: After a visit of the pharmaceutical company in order to investigate the Mesalazine powder production, we performed an individual medical evaluation of the 21 workers. Our medical protocol was based on the safety data sheet of Mesalazine, the data found in the scientific literature and the «Compendium Suisse des Médicaments» and covered upper and lower respiratory tract as well as skin and eyes. Results: Sixty two percent (62%) of the exposed employees had symptoms of skin, eyes and throat irritation. Three employees reported respiratory symptoms such as dyspnoea, cough and expiratory wheezing, which appeared during the working hours. The Peak Flow series performed at the workplace was lowered in the three employees with lower respiratory tract symptoms. None of the three had consulted a physician, even though the symptoms had been present since some months. The pneumological evaluation confirmed for all three cases the asthma diagnoses. Conclusion: It is known that patients who are treated with drugs including Mesalazine can develop adverse health effect such as asthma. However occupational asthma in workers exposed to Mesalazine powder inhalation is until now not described in the literature. Immunologic investigations in order to know if the occupational asthma caused by Mesalazine is of allergic or mechanical irritation nature are still ongoing. Concerning the three workers with asthma, inability to work with Mesalazine was pronounced. Furthermore, the SUVA recognized the three patients with asthma as occupational respiratory diseases. Following our results and recommendations, the company undertook some measures to reduce the exposure to Mesalazine. A new health evaluation of the employees in the Mesalazine production is hence planned in 2009. As each year new causes of occupational asthma are described, the possible work relation of new asthma onset has to be carefully investigated as the consequences for the patient e.g. removal from exposure and for the exposed co-workers are of substantial importance.
Resumo:
Endotoxin causes an inflammation at the bronchial and alveolar level. The inflammation-induced increase in permeability of the bronchoalveolar epithelial barrier is supposed to cause a leakage of pneumoproteins. Therefore, their concentrations are expected to increase in the bloodstream.This study aimed at examining the association between occupational exposure to endotoxin and a serum pneumoprotein, surfactant protein A, to look for nonoccupational factors capable of confounding this association, and examine the relation between surfactant protein A and spirometry. There were 369 control subjects, 325 wastewater workers, and 84 garbage collectors in the study. Exposure to endotoxin was assessed through personal sampling and the Limulus amebocytes lysate assay. Surfactant protein A was determined by an in house sandwich enzyme-linked immunosorbent assay (ELISA) in 697 subjects. Clinical and smoking history were ascertained and spirometry carried out according to American Thoracic Society criteria. Multiple linear regression was used for statistical analysis. Exposure was fairly high during some tasks in wastewater workers but did not influence surfactant protein A. Surfactant protein A was lower in asthmatics. Interindividual variability was large. No correlation with spirometry was found. Endotoxin has no effect on surfactant protein A at these endotoxin levels and serum surfactant protein A does not correlate with spirometry. The decreased surfactant protein A secretion in asthmatics requires further study.