996 resultados para INFRARED EMISSION


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water-soluble, stable, and easily synthesizable 1:4 complexes of rare-earth ions with 8-hydroxy-5-nitroquinolinate ligands have been prepared. These complexes can be sensitized by visible light with wavelengths up to 480 nm and show near-infrared emission in aqueous solution. The incorporation of a nitro group in the quinoline moiety shifts its absorption bands to longer wavelengths and also increases its molar absorptivity by a factor of 2.5, thereby significantly enhancing its light-harvesting power. The presence of the nitro group also increases the solubility of the resulting complexes, making them water-soluble. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Anhydrous neodymium(III) iodide and erbium(Ill) iodide were dissolved in carefully dried batches of the ionic liquid 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(12)mim][Tf2N]. Provided that the ionic liquid had a low water content, intense near-infrared emission could be observed for both the neodymium(III) ion and for the erbium(III) ion. Luminescence lifetimes have been measured, and the quantum yield of the neodymium(III) sample has been measured. Exposure of the hygroscopic samples to atmospheric moisture conditions caused a rapid decrease of the luminescence intensities. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The new erbium(III) complex of picolinic acid (Hpic), ["Bu4N][Er(pic)(4)].5.5H(2)O, was synthesized and the crystal structure determined by single-crystal X-ray diffraction. The compound was further characterized using IR, Raman, H-1 NMR and elemental analysis. The picolinate ligands (pic(-)) are coordinated through N,O-chelation to the erbium cations, as shown by X-ray diffraction and spectroscopic results, leading to an eight coordinate complex. Photoluminescence measurements were performed for this compound which exhibits infrared emission. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Er(3)Al(5)O(12) phosphor powders were prepared using the solution combustion method. Formation and homogeneity of the Er(3)Al(5)O(12) phosphor powders have been verified by X-ray diffraction and energy-dispersive X-ray analysis respectively. The frequency up-conversion from Er(3)Al(5)O(12) phosphor powder corresponding to the (2)H(9/2) -> (4)I(15/2), (2)H(11/2) -> (4)I(15/2), (4)S(3/2) -> (4)I(15/2), (4)F(9/2) -> (4)I(15/2) and the infrared emission (IR) due to the (4)I(13/2) -> (4)I(15/2) transitions lying at similar to 410, similar to 524, similar to 556, 645-680 nm and at similar to 1.53 mu m respectively upon excitation with a Ti-Sapphire pulsed/CW laser have been reported. The mechanism responsible for the frequency up-conversion and IR emission is discussed in detail. Defect centres induced by radiation were studied using the techniques of thermoluminescence and electron spin resonance. A single glow peak at 430A degrees C is observed and the thermoluminescence results show the presence of a defect center which decays at high temperature. Electron spin resonance studies indicate a center characterized by a g-factor equal to 2.0056 and it is observed that this center is not related to the thermoluminescence peak. A negligibly small concentration of cation and anion vacancies appears to be present in the phosphor in accordance with the earlier theoretical predictions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Efficient energy upconversion of cw radiation at 1.064 mum into blue, red, and near infrared emission in Tm3+-doped Yb3+-sensitized 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) glasses is reported. Intense blue upconversion luminescence at 485 nm corresponding to the Tm3+ (1)G(4)--> H-3(6) transition with a measured absolute power of 0.1 muW for 800 mW excitation power at room temperature is observed. The experimental results also revealed a sevenfold enhancement in the upconversion efficiency when the sample was heated from room temperature to 235 degreesC yielding 0.7 muW of blue absolute fluorescence power for 800 mW pump power. High brightness emission around 800 nm (F-3(4)--> H-3(6)) in addition to a less intense 655 nm ((1)G(4)--> H-3(4) and F-3(2,3)--> H-3(6)) fluorescence is also recorded. The energy upconversion excitation mechanism for thulium emitting levels is assigned to multiphonon-assisted anti-Stokes excitation of the ytterbium-sensitizer followed by multiphonon-assisted sequential energy-transfer processes. (C) 2001 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal evolution process of RuO2–Ta2O5/Ti coatings with varying noble metal content has been investigated under in situ conditions by thermogravimetry combined with mass spectrometry. The gel-like films prepared from alcoholic solutions of the precursor salts (RuCl3·3H2O, TaCl5) onto titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600 °C. The evolution of the mixed oxide coatings was followed by the mass spectrometric ion intensity curves. The cracking of retained solvent and the combustion of organic surface species formed were also followed by the mass spectrometric curves. The formation of carbonyl- and carboxylate-type surface species connected to the noble metal was identified by Fourier transform infrared emission spectroscopy. These secondary processes–catalyzed by the noble metal–may play an important role in the development of surface morphology and electrochemical properties. The evolution of the two oxide phases does not take place independently, and the effect of the noble metal as a combustion catalyst was proved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boehmite nanofibers of high quality were synthesized through a wet-gel conversion process without the use of a surfactant. The long nanofibers of boehmite with clear-cut edges were obtained by steaming the wet-gel precipitate at 170 ºC for 2 days under a pH 5. Hydrothermal treatment of the boehmite gels enabled self-assembly through directed crystal growth. Detailed characterization using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Infrared Emission Spectroscopy (IES) and Raman Spectroscopy is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silylated layered double hydroxides (LDHs) were synthesized through a surfactant-free method involving an in situ condensation of silane with the surface hydroxyl group of LDHs during its reconstruction in carbonate solution. X-ray diffraction (XRD) patterns showed the silylation reaction occurred on the external surfaces of LDHs layers. The successful silylation was evidenced by 29Si cross-polarization magic-angle spinning nuclear magnetic resonance (29Si CP/MAS NMR) spectroscopy, attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy, and infrared emission spectroscopy (IES). The ribbon shaped crystallites with a “rodlike” aggregation were observed through transmission electron microscopy (TEM) images. The aggregation was explained by the T2 and T3 types of linkage between adjacent silane molecules as indicated in the 29Si NMR spectrum. In addition, the silylated products show high thermal stability by maintained Si related bands even when the temperature was increased to 1000 °C as observed in IES spectra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two kinds of coal-bearing kaolinite from China were analysed by X-ray diffraction (XRD), Thermogravimetric analysis-mass spectrometry (TG-MS), infrared emission spectroscopy. Thermal decomposition occurs in a series of steps attributed to (a) desorption of water at 68 °C for Datong coal bearing strata kaolinite and 56 °C for Xiaoxian with mass losses of 0.36 % and 0.51 % (b) decarbonization at 456 °C for Datong coal bearing strata kaolinite and 431 °C for Xiaoxian kaolinite, (c) dehydroxylation takes place in two steps at 589 and 633 °C for Datong coal bearing strata kaolinite and at 507 °C and 579 °C for Xiaoxian kaolinite. This mineral were further characterised by infrared emission spectroscopy (IES). Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm-1 are observed. At 650 °C all intensity in these bands is lost in harmony with the thermal analysis results. Characteristic functional groups from coal are observed at 1918, 1724 and 1459 cm-1. The intensity of these bands decrease by thermal treatment and is lost by 700 °C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a range of nanomaterials have been synthesised based on metal oxyhydroxides MO(OH), where M=Al, Co, Cr, etc. Through a self-assembly hydrothermal route, metal oxyhydroxide nanomaterials with various morphologies were successfully synthesised: one dimensional boehmite (AlO(OH)) nanofibres, zero dimensional indium hydroxide (In(OH)3) nanocubes and chromium oxyhydroxide (CrO(OH)) nanoparticles, as well as two dimensional cobalt hydroxide and oxyhydroxide (Co(OH)2 & CoO(OH)) nanodiscs. In order to control the synthetic nanomaterial morphology and growth, several factors were investigated including cation concentration, temperature, hydrothermal treatment time, and pH. Metal ion doping is a promising technique to modify and control the properties of materials by intentionally introducing impurities or defects into the material. Chromium was successfully applied as a dopant for fabricating doped boehmite nanofibres. The thermal stability of the boehmite nanofibres was enhanced by chromium doping, and the photoluminescence property was introduced to the chromium doped alumina nanofibres. Doping proved to be an efficient method to modify and functionalize nanomaterials. The synthesised nanomaterials were fully characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED), scanning electron microscopy (SEM), BET specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and thermo gravimetric analysis (TGA). Hot-stage Raman and infrared emission spectroscopy were applied to study the chemical reactions during dehydration and dehydroxylation. The advantage of these techniques is that the changes in molecular structure can be followed in situ and at the elevated temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrotalcite and thermally activated hydrotalcites were examined for their potential as methods for the removal of oxalate anions from Bayer Process liquors. Hydrotalcite was prepared and characterised by a number of methods, including X-ray diffraction, thermogravimetric analysis, nitrogen adsorption analysis and vibrational spectroscopy. Thermally activated hydrotalcites were prepared by a low temperature method and characterised using X-ray diffraction, nitrogen adsorption analysis and vibrational spectroscopy. Oxalate intercalated hydrotalcite was prepared by two methods and analysed with X-ray diffraction and for the first time thermogravimetric analysis, Raman spectroscopy and infrared emission spectroscopy. The adsorption of oxalate anions by hydrotalcite and thermally activated hydrotalcite was tested in a range of solutions using both batch and kinetic adsorption models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of solid strong acid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid strong acid counterparts were characterised by a variety of techniques including 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR), scanned electronic microscopy (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Nitrogen adsorption and infrared emission spectroscopy (IES). NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained solid acids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia.