963 resultados para INFECTIOUS BRONCHITIS VIRUS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Several viruses have been identified in recent years in the intestinal contents of chickens and turkeys with enteric problems, which have been observed in commercial farms worldwide, including Brazil. Molecular detection of these viruses in Brazil can transform to a big threat for poultry production due to risk for intestinal integrity. This disease is characterized by severely delayed growth, low uniformity, lethargy, watery diarrhea, delayed feed consumption, and a decreased conversion rate. Chicken astrovirus (CAstV), rotavirus, reovirus, chicken parvovirus (ChPV), fowl adenovirus of subgroup I (FAdV-1), and avian nephritis virus (ANV) were investigated using the conventional polymerase chain reaction (PCR) and the reverse transcription polymerase chain reaction (RT-PCR). In addition, the infectious bronchitis virus (IBV), which may play a role in enteric disease, was included. The viruses most frequently detected, either alone or in concomitance with other viruses, were IBV, ANV, rotavirus, and CAstV followed by parvovirus, reovirus, and adenovirus. This study demonstrates the diversity of viruses in Brazilian chicken flocks presenting enteric problems characterized by diarrhea, growth retard, loss weight, and mortality, which reflects the multicausal etiology of this disease
Resumo:
We have expressed a fusion protein formed between the avian infectious bronchitis virus M protein and the bacterial enzyme beta-glucuronidase in transgenic tobacco cells. Electron microscope images of such cells demonstrate that overexpression of this fusion protein gives rise to a type of endoplasmic reticulum membrane domain in which adjacent membranes become zippered together apparently as a consequence of the oligomerizing action of beta-glucuronidase. These zippered (Z-) membranes lack markers of the endoplasmic reticulum (NADH cytochrome c reductase and ribosomes) and accumulate in the cells in the form of multilayered scroll-like structures (up to 2 micrometers in diameter; 20-50 per cell) without affecting plant growth. The discovery of Z-membranes has broad implications for biology and biotechnology in that they provide a means for accumulating large quantities of recombinant membrane proteins within discrete domains of native membranes.
Resumo:
The gammacoronavirus, Infectious Bronchitis Virus (IBV), is a respiratory pathogen of chickens. IBV is a constant threat to poultry production as established vaccines are often ineffective against emerging strains. This requires constant and rapid vaccine production by a process of viral attenuation by egg passage, but the essential forces leading to attenuation in the virus have not yet been characterised. Knowledge of these factors will lead to the development of more effective, rationally attenuated, live vaccines and reduction of the mortality and morbidity caused by this pathogen. M41 CK strain was egg passaged four times many years ago at Houghton Poultry Research Station and stored as M41-CK EP4 (stock virus at The Pirbright Institute since 1992). It was the first egg passage to have its genome pyrosequenced and was therefore used as the baseline reference. The overall aim of this project was to analyse deep sequence data obtained from four IBV isolates (called A, A1, C and D) each originating from the common M41-CK EP4 (ep4) and independently passaged multiple times in embryonated chicken eggs (figure 1.1). Highly polymorphic encoding regions of the IBV genome were then identified which are likely involved in the attenuation process through the formation of independent SNPs and/or SNP clusters. This was then used to direct targeted investigation of SNPs during the attenuation process of the four IBV passages. A previously generated deep sequence dataset was used as a preliminary map of attenuation for one virulent strain of IBV. This investigation showed the nucleocapsid and spike as two highly polymorphic encoding regions within the IBV genome with the highest proportion of SNPs compared to encoding region size. This analysis then led to more focussed studies of the nucleocapsid and spike encoding region with the ultimate aim of mapping key attenuating regions and nucleotide positions. The 454 pyrosequencing data and further investigation of nucleocapsid and spike encoding regions have identified the SNPs present at the same nucleotide positions within analysed A, A1, C and D isolates. These SNPs probably play a crucial role in viral attenuation and universal vaccine production but it is not clear if independent SNPs are also involved in loss of virulence. The majority of SNPs accumulated at different nucleotide positions without further continuation in Sanger sequenced egg passages presenting S2 subunit (spike) and nucleocapsid as polymorphic encoding regions which in nature remain highly conserved.
Resumo:
Isolates of infectious bursal disease virus (IBDV) were obtained from domestic poultry in New Zealand in 1997 and 1998. An in-vivo pathogenicity study carried out in specific pathogen free (SPF) chickens demonstrated the low virulence of one of the virus isolates. The nucleotide sequences of the hypervariable region of the VP2 gene of two isolates were determined and compared with published sequences of strains from other countries. The deduced amino acid sequence of the two New Zealand IBDV isolates showed 100% identity with each other, suggesting that little genetic drift had occurred. Phylogenetic analysis showed that the New Zealand isolates were more closely related to two attenuated IBDV strains (Cu1 and PBG98) than to classical (STC and 52/70), very virulent (DV86), variant (variant E) or Australian (002-73) strains. The results support the hypothesis that an attenuated strain of the virus was inadvertently introduced into the NZ poultry population in 1993.
Resumo:
In 2012, the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the haemagglutinin and neuraminidase proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event.
Resumo:
A standardised nested-PCR method that amplifies a region of the glycoprotein E gene of avian infectious laryngotracheitis virus (ILTV) has been developed for the diagnosis of infection by Gallid herpesvirus 1. The two sets of primers employed produced the expected ampIification products of 524bp(externa I primers) and 219bp (internal primers) in the presence of ILTV DNA, whereas no Such amplicons were obtained with other avian respiratory pathogens or with DNA extracted from the cells of uninfected chickens. The identity of the 219bp amplified product was con firmed by DNA sequencing. The standardised nested-PCR method detected ILTV DNA from trachea, lung, conjunctiva and trigeminal ganglia samples from flocks of birds with and without clinical signs. and showed hi.-h sensitivity (95.4%) and specificity (93.1%) when compared with the reference test involving virus isolation in specific-pathogen-free chicken embryos. The standardised nested-PCR method described may be used to detect clinical and latent ILTV infections, and will be of significant value for both diagnostic and epidemiological Studies. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The tat gene is required by HIV-1 for efficient reverse transcription and this function of Tat can be distinguished from its role in transcription by RNA polymerase II using tat point mutations that abrogate each function independently The mechanism of Tat's role in reverse transcription, however, is not known, nor is it known whether this role is conserved among trans-activating factors in other retroviruses. Here we examine the abilities of heterologous viral trans-activating proteins from jembrana disease virus (jTat), HIV-2 (Tat2), and equine infectious anemia virus (eTat) to substitute for HIV-1 Tat (Tat1) and restore reverse transcription in HIV-1 carrying an inactivated tat gene. Natural endogenous reverse transcription assays showed that trans-activators from some retroviruses (Tat2 and jTat, but not eTat) could substitute for Tat1 in complementation of HIV-1 reverse transcription. Finally, we show that Y47 is critical for Tat1 to function in reverse transcription, but not HIV-1 gene expression. We mutated the homologous position in jTat to H62Y and found it did not improve its ability to stimulate reverse transcription, but an H62A mutation did inhibit jTat complementation. These data highlight the finding that the role of Tat in reverse transcription is not related to trans-activation and demonstrate that other tat genes conserve this function. (C) 2002 Elsevier Science (USA).
Resumo:
An antigen capture immunoassay to detect West Nile (WN) virus antigen in infected mosquitoes and avian tissues has been developed. With this assay purified WN virus was detected at a concentration of 32 pg/0.1 ml, and antigen in infected suckling mouse brain and laboratory-infected mosquito pools could be detected when the WN virus titer was 10(2.1) to 10(3.7) PFU/0.1 ml. In a blindly coded set of field-collected mosquito pools (n = 100), this assay detected WN virus antigen in 12 of 18 (66.7%) TaqMan-positive pools, whereas traditional reverse transcriptase PCR detected 10 of 18 (55.5%) positive pools. A sample set of 73 organ homogenates from naturally infected American crows was also examined by WN virus antigen capture immunoassay and TaqMan for the presence of WN virus. The antigen capture assay detected antigen in 30 of 34 (88.2%) TaqMan-positive tissues. Based upon a TaqMan-generated standard curve of infectious WN virus, the limit of detection in the antigen capture assay for avian tissue homogenates was approximately 10(3) PFU/0.1 ml. The recommended WN virus antigen capture protocol, which includes a capture assay followed by a confirmatory inhibition assay used to retest presumptive positive samples, could distinguish between the closely related WN and St. Louis encephalitis viruses in virus-infected mosquito pools and avian tissues. Therefore, this immunoassay demonstrates adequate sensitivity and specificity for surveillance of WN virus activity in mosquito vectors and avian hosts, and, in addition, it is easy to perform and relatively inexpensive compared with the TaqMan assay.
Resumo:
The prevalence of antibodies against Equine Influenza Virus (EIV) was determined in 529 equines living on ranches in the municipality of Poconé, Pantanal area of Brazil, by means of the hemagglutination inhibition test, using subtype H3N8 as antigen. The distribution and possible association among positive animal and ranches were evaluated by the chi-square test, spatial autoregressive and multiple linear regression models. The prevalence of antibodies against EIV was estimated at 45.2% (95% CI 30.2 - 61.1%) with titers ranging from 20 to 1,280 HAU. Seropositive equines were found on 92.0% of the surveyed ranches. Equine from non-flooded ranches (66.5%) and negativity in equine infectious anemia virus (EIAV) (61.7%) were associated with antibodies against EIV. No spatial correlation was found among the ranches, but the ones located in non-flooded areas were associated with antibodies against EIV. A negative correlation was found between the prevalence of antibodies against EIV and the presence of EIAV positive animals on the ranches. The high prevalence of antibodies against EIV detected in this study suggests that the virus is circulating among the animals, and this statistical analysis indicates that the movement and aggregation of animals are factors associated to the transmission of the virus in the region.
Resumo:
During the replication cycle of vaccinia virus, four different forms of viral particles are produced. The two extracellular enveloped forms, cell-associated enveloped virus and extracellular enveloped virus, are responsible for cell-to-cell transmission and long-range spread of infection both in vivo and in vitro. Despite the biological importance of the enveloped forms, the mechanism of envelopment and the components involved in this process have been analysed only recently. Therefore the individual steps and the rate-limiting factors of the envelopment process are still unknown. The protein p37K, an unglycosylated but acylated envelope protein of molecular mass 37 kDa, has been shown to be essential for envelopment. However, this study shows that over-expression of p37K by vaccinia virus recombinants reduces rather than increases the yield of infectious enveloped virus which is mainly due to the enveloped virions exhibiting a strongly diminished specific infectivity.
Resumo:
El IMARPE Tumbes programó el 2007 el monitoreo de Penaeus vannamei y P. stylirostris en los esteros de la Región, para detectar presencia y distribución del virus de la mionecrosis infecciosa (IMNV). Se colectaron 2407 especímenes, y se concluyó que las poblaciones silvestres de P. vannamei y P. stylirostris se encontraban libres del virus.
Resumo:
Abstract: Equine infectious anemia (EIA) is a transmissible and incurable disease caused by a lentivirus, the equine infectious anemia virus (EIAV). There are no reports in the literature of this infection in Equidae on Marajo Island. The objective of this study was to diagnose the disease in the municipalities of Cachoeira do Arari, Salvaterra, Santa Cruz do Arari and Soure, on Marajó Island, state of Pará, Brazil. For serological survey samples were collected from 294 horses, over 5-month-old, males and females of puruca and marajoara breeds and from some half-breeds, which were tested by immunodiffusion in Agar gel (AGID). A prevalence of 46.26% (136/294) positive cases was found. EIA is considered endemic in the municipalities studied, due to the ecology of the region with a high numbered population of bloodsucking insect vectors and the absence of official measures for the control of the disease.