986 resultados para INCREMENTAL EXERCISE
Resumo:
The effects of adding L-carnitine to a whole-body and respiratory training program were determined in moderate-to-severe chronic obstructive pulmonary disease (COPD) patients. Sixteen COPD patients (66 ± 7 years) were randomly assigned to L-carnitine (CG) or placebo group (PG) that received either L-carnitine or saline solution (2 g/day, orally) for 6 weeks (forced expiratory volume on first second was 38 ± 16 and 36 ± 12%, respectively). Both groups participated in three weekly 30-min treadmill and threshold inspiratory muscle training sessions, with 3 sets of 10 loaded inspirations (40%) at maximal inspiratory pressure. Nutritional status, exercise tolerance on a treadmill and six-minute walking test, blood lactate, heart rate, blood pressure, and respiratory muscle strength were determined as baseline and on day 42. Maximal capacity in the incremental exercise test was significantly improved in both groups (P < 0.05). Blood lactate, blood pressure, oxygen saturation, and heart rate at identical exercise levels were lower in CG after training (P < 0.05). Inspiratory muscle strength and walking test tolerance were significantly improved in both groups, but the gains of CG were significantly higher than those of PG (40 ± 14 vs 14 ± 5 cmH2O, and 87 ± 30 vs 34 ± 29 m, respectively; P < 0.05). Blood lactate concentration was significantly lower in CG than in PG (1.6 ± 0.7 vs 2.3 ± 0.7 mM, P < 0.05). The present data suggest that carnitine can improve exercise tolerance and inspiratory muscle strength in COPD patients, as well as reduce lactate production.
Resumo:
The objective of this study was to verify the effect of the passive recovery time following a supramaximal sprint exercise and the incremental exercise test on the lactate minimum speed (LMS). Thirteen sprinters and 12 endurance runners performed the following tests: 1) a maximal 500 m sprint followed by a passive recovery to determine the time to reach the peak blood lactate concentration; 2) after the maximal 500 m sprint, the athletes rested eight mins, and then performed 6 x 800 m incremental test, in order to determine the speed corresponding to the lower blood lactate concentration (LMS1) and; 3) identical procedures of the LMS1, differing only in the passive rest time, that was performed in accordance with the time to peak lactate (LMS2). The time (min) to reach the peak blood lactate concentration was significantly higher in the sprinters (12.76+/-2.83) than in the endurance runners (10.25+/-3.01). There was no significant difference between LMS1 and LMS2, for both endurance (285.7+/-19.9; 283.9+/-17.8 m/min; r= 0.96) and sprint runners (238.0+/-14.1; 239.4+/-13.9 m/min; r= 0.93), respectively. We can conclude that the LMS is not influenced by a passive recovery period longer than eight mins (adjusted according with the time to peak blood lactate), although blood lactate concentration may differ at this speed. The predominant type of training (aerobic or anaerobic) of the athletes does not seem to influence the phenomenon previously described.
Resumo:
Aim. The aim of the present study was to investigate the validity of the Lactate Minimum Test (LMT) for the determination of peak VO2 on a cycle ergometer and to determine the submaximal oxygen uptake (VO2) and pulmonary ventilation (VE) responses in an incremental exercise test when it is preceded by high intensity exercise (i.e., during a LMT).Methods. Ten trained male athletes (triathletes and cyclists) performed 2 exercise tests in random order on an electromagnetic cycle ergometer: 1) Control Test (CT): an incremental test with an initial work rate of 100 W, and with 25 W increments at 3-min intervals, until voluntary exhaustion; 2) LMT: an incremental test identical to the CT, except that it was preceded by 2 supramaximal bouts of 30-sec (similar to120% VO(2)peak) with a 30-sec rest to induce lactic acidosis. This test started 8 min after the induction of acidosis.Results. There was no significant difference in peak VO2 (65.6+/-7.4 ml.kg(-1).min(-1); 63.8+/-7.5 ml.kg(-1).min(-1) to CT and LMT, respectively). However, the maximal power output (POmax) reached was significantly higher in CT (300.6+/-15.7 W) than in the LMT (283.2+/-16.0 W).VO2 and VE were significantly increased at initial power outputs in LMT.Conclusion. Although the LMT alters the submaximal physiological responses during the incremental phase (greater initial metabolic cost), this protocol is valid to evaluate peak VO2, although the POmax reached is also reduced.
Resumo:
The aim of the present study was to investigate the effect of long-term oral supplementation of creatine on the physiological responses to aerobic training. Twelve purebred Arabian horses were submitted to aerobic training for 90 days, with and without creatine supplementation which consisted of the daily administration of 75g of creatine monohydrate mixed into the ration for 90 days of training. Physical conditioning was conducted on a high performance treadmill and training intensity was stipulated by calculating the V 4 (velocity at which blood lactate reaches 4mmol L -1) determined monthly for each animal. The individual intensity of physical force at 80% of aerobic threshold was established. An incremental exercise test was used to set the individual V4. After a warm up period of 4 min at 4m s -1), the speed was increased at 2min intervals to 6, 8 and 10m s -1). The blood samples were collected 15s before the end of each step to determine the concentration of lactate, packed cell volume, hemoglobin and red cell values. The results demonstrated a significant increase (P<0.05) in V4 in the groups that received creatine supplementation for 60 days or more when compared to the animals without creatine supplememntation. The other hematological variables were similar to all groups. The results showed that the prolonged creatine supplementation may have a beneficial al effect on the equine athletic performance.
Resumo:
The aim of this study was to determine the serum activities of enzymes aspartate aminotransferase, creatine kinase and lactate dehydrogenase in Arabian horses submitted to exercise on high-speed equine treadmill. Eleven mature Arabian horse were training and submitted to Standard Incremental Exercise Test on high-speed equine treadmill. Venous blood samples were taken before exercise, immediately and 30 min, 60min, 3h, 6h, 24h, 3 days and 5 days after exercise. The serum activity aspartate aminotransferase, creatine kinase and lactate dehydrogenase were determined. The serum activies of AST, CK and LDH increase immediately and returned to baseline value 30 minutes after exercise. The AST enzyme activity increased at 12 hours and 24 hours, CK at 3 hours and 6 hours, and LDH at 24 hours after Standard Incremental Exercise Test.
Resumo:
The current study evaluated equine gas exchange responses through spirometry, by measuring oxygen uptake (VO2), carbon dioxide production (VCO2), respiratory exchange ratio (R) and maximum oxygen uptake (VO2max) of Arabian horses during a standard incremental exercise test performed on a high-speed treadmill. Six clinically healthy Arabian horses were submitted to a standard incremental exercise test, performed on a high-speed treadmill at a 6% slope, and initial speed of 1,8 m.s-1 for 5 minutes, then 4,0 m.s-1 for 3 minutes, 6,0 m.s-1 for 2 minutes and 8,0 m.s-1, 9,0 m.s-1, 10,0 m.s-1 and 11,0 m.s-1 for one minute for each of these speed. The end of the exercise test was defined as the point in which the horse was no longer able to keep pace with the treadmill. Gas exchange was measured through respiratory analyses horse mask on the last 10 seconds at the end of each speed transition and at 1, 2 and 3 minutes after the end of the exercise, defined as experiment moments. During exercise, it was noticed an increase on both VO2 and VCO2 with linear relationship between exercise and speed. Arabian horses VO2max was 114,9 mL.kg-1.min-1. The respiratory exchange ratio increased over 1,0 by the speed of 9,0 m.s-1, indicating the preponderance of the anaerobic metabolism, and remains at a high level on the post-exercise period.
Resumo:
The effect of physical exercise, training and vitamin E supplementation on electrocardiographic parameters was evaluated in eight untrained Arabian mares, divided into two groups: control (n=4) and supplemented with vitamin E (n=4) at the daily dose of 1.000 UI. Animals were submitted to an incremental exercise test (P1) on high-speed treadmill inclined +7%, after that to a training period of 20 days and later to a new incremental exercise test (P2). Analysis and interpretation of electrocardiographic tracings were performed regarding the rhythm, heart rate, duration and amplitude of waves and intervals, before, immediately after and 30 min after the incremental exercise. A reduction of the rest heart rate was observed after training. There was no effect of vitamin E supplementation on electrocardiographic parameters. Results indicated that the electrocardiogram was efficient in detention of cardiac alterations promoted by the physical exercise, but more studies are needed to elucidate its clinical meaning.
Resumo:
The aim of this study was to investigate the possible influence of different levels of aerobic fitness (VO2MAX) on the parameters of the running anaerobic sprint test (RAST). Thirty-eight subjects (Age = 18.1 ± 2.5 years, Height = 173 ± 1 cm and Body mass = 65.1 ± 6.5 kg) were classified into two groups, low and high aerobic fitness (LAF: n = 22 and HAF: n = 16). The VO2MAX was determined by an incremental exercise performed until exhaustion. The RAST was composed of six maximal efforts of 35m separated by 10s passive recovery. The VO2MAX was significantly different between groups (LAF = 51.7 ± 1.9 mL.kg -1.min-1; HAF = 58.6 ± 3.1 mL.kg -1.min-1). The mean power (MP) was significantly higher in the LAF (552.7 ± 132.1 W) in relation to the HAF group (463.6 ± 132.8 W). The impulse (ImP) was significantly correlated with the VO 2MAX in HAF. It can be concluded that there is an indication that the aerobic metabolism exerts an influence on the completion of RAST.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)