913 resultados para I COLLAGEN GENE
Resumo:
The population genetic structure of fish parasitic nematode, Camallanus cotti, collected from the Yangtze River, Pearl River and Minjiang River in China was investigated. From these parasites, the similar to 730 bp of the first internal transcribed spacer of ribosomal DNA (ITS1 rDNA) and the 428 bp of mitochondrial cytochrome c oxidase subunit I (COI) gene were sequenced. For the ITS1 rDNA data set, highly significant Fst values and low rates of migration were detected between the Pearl River group and both the Yangtze River (Fst = 0.70, P < 0.00001; Nm = 0.21) and Minjiang River (Fst = 0.73, P < 0.00001; Nm = 0.18) groups, while low Fst value (Fst = 0.018, P > 0.05) and high rate of migration (Nm = 28.42) were found between the Minjiang and the Yangtze rivers. When different host/locality populations (subpopulations) within each river were considered, subpopulations between the Yangtze River and Minjiang River had low Fst values (<= 0.12) and high Nm values (>3.72), while Pearl River subpopulations were significantly different from the Yangtze River and Minjiang River subpopulations (Fst >= 0.59; Nm < 1). The COI gene data set revealed a similar genetic structure. Both phylogenetic analyses and a statistical parsimony network grouped the Pearl River haplotypes into one phylogroup, while the Yangtze River and Minjiang River haplotypes formed a second group. These results suggested that the Yangtze River and Minjiang River subpopulations constituted a single reproductive pool that was distinct from the Pearl River subpopulations. In addition, the present study did not find host-related genetic differentiation occurring in the same drainage. (C) 2009 Published by Elsevier B.V.
Resumo:
Transgenic common carp, Cyprinus carpio, produced by the microinjection of fertilized eggs with a linearized chimeric plasmid pMThGH, a human growth hormone (hGH) gene with a mouse metallothionein-I (MT) gene promoter in pBR322, were used to produce F1 and F2 transgenics. Following hypophysectomy of the transgenic F2 common carp, non-transgenic common carp and non-transgenic crucian carp, growth was monitored for up to 110 days. In addition, recombinant hGH was injected subcutaenously into a group of the non-transgenic crucian carp. Growth rate analyses indicated that (1) hypophysectomy of non-transgenic common carp and crucian carp results in the cessation of growth, (2) hGH administration can stimulate the growth of hypophysectomized crucian carp and (3) hypophysectomized hGH-transgenic common carp continue to grow in the absence of their own growth hormone, suggesting that the hGH-transgene is being expressed in tissues other than the pituitary.
Resumo:
Reduced arterial compliance precedes changes in blood pressure, which may be mediated through alterations in vessel wall matrix composition. We investigated the effect of the collagen type I-1 gene (COL1A1) +2046G>T polymorphism on arterial compliance in healthy individuals. We recruited 489 subjects (251 men and 238 women; mean age, 22.6±1.6 years). COL1A1 genotypes were determined using polymerase chain reaction and digestion by restriction enzyme Bal1. Arterial pulse wave velocities were measured in 3 segments, aortoiliac (PWVA), aortoradial (PWVB), and aorto-dorsalis-pedis (PWVF), as an index of compliance using a noninvasive optical method. Data were available for 455 subjects. The sample was in Hardy-Weinberg equilibrium with genotype distributions and allele frequencies that were not significantly different from those reported previously. The T allele frequency was 0.22 (95% confidence interval, 0.19 to 0.24). Two hundred eighty-three (62.2%) subjects were genotype GG, 148 (35.5%) subjects were genotype GT, and 24 (5.3%) subjects were genotype TT. A comparison of GG homozygotes with GT and TT individuals demonstrated a statistically significant association with arterial compliance: PWVF 4.92±0.03 versus 5.06±0.05 m/s (ANOVA, P=0.009), PWVB 4.20±0.03 versus 4.32±0.04 m/s (ANOVA, P=0.036), and PWVA 3.07±0.03 versus 3.15±0.03 m/s (ANOVA, P=0.045). The effects of genotype were independent of age, gender, smoking, mean arterial pressure, body mass index, family history of hypertension, and activity scores. We report an association between the COL1A1 gene polymorphism and arterial compliance. Alterations in arterial collagen type 1A deposition may play a role in the regulation of arterial compliance
Resumo:
Background: The phosphatidylinositol 3-kinase (PI3K)-AKT signal transduction pathway is critical to cell growth and survival. In vitro functional studies indicate that the candidate schizophrenia susceptibility gene <i>DTNBP1i> influences AKT signaling to promote neuronal viability. The <i>AKT1i> gene has also been implicated in schizophrenia by association studies and decreased protein expression in the brains of schizophrenic patients.
Methods: The association of <i>DTNBP1 in the Irish Study of High Density Schizophrenia Families (ISHDSF) prompted our investigation of AKT1 for association with disease in this sample. Eight single nucleotide polymorphisms spanning <i>AKT1i> were analyzed for association with schizophrenia across four definitions of affection and according to Operational Criteria Checklist of Psychotic Illness (OPCRIT) symptom scales. We examined expression of <i>AKT1i> messenger RNA from postmortem brain tissue of schizophrenic, bipolar, and control individuals. i>
Results: No single marker showed significant association, but the risk haplotype previously found over-transmitted to Caucasian schizophrenic patients was significantly under-transmitted in the ISHDSF (.01 < p < .05), across all OPCRIT symptom dimensions. Exploratory haplotype analysis confirmed association with schizophrenia toward the 5’ end of AKT1 (.008 < p < .049, uncorrected). We found significantly decreased RNA levels in prefrontal cortex of schizophrenic individuals, consistent with reduced AKT1 protein levels reported in schizophrenic brain.
Conclusions: The replication of association of <i>AKT1 gene variants in a further Caucasian family sample adds support for involvement of AKT signaling in schizophrenia, perhaps encompassing a broader clinical phenotype that includes mood dysregulation. We show that AKT signaling might be compromised in schizophrenic and bipolar patients via reduced RNA expression of specific AKT isoforms.i>
Resumo:
The aim of this study was to examine the potential of incorporating bovine fibres as a means of reinforcing a typically brittle apatite calcium phosphate cement for vertebroplasty. Type I collagen derived from bovine Achilles tendon was ground cryogenically to produce an average fibre length of 0.96 ± 0.55 mm and manually mixed into the powder phase of an apatite-based cement at 1, 3 or 5 wt.%. Fibre addition of up to 5 wt.% had a significant effect (P = 0.001) on the fracture toughness, which was increased by 172%. Adding =1 wt.% bovine collagen fibres did not compromise the compressive properties significantly, however, a decrease of 39-53% was demonstrated at =3 wt.% fibre loading. Adding bovine collagen to the calcium phosphate cement reduced the initial and final setting times to satisfy the clinical requirements stated for vertebroplasty. The cement viscosity increased in a linear manner (R = 0.975) with increased loading of collagen fibres, such that the injectability was found to be reduced by 83% at 5 wt.% collagen loading. This study suggests for the first time the potential application of a collagen-reinforced calcium phosphate cement as a viable option in the treatment of vertebral fractures, however, issues surrounding efficacious cement delivery need to be addressed. © 2012 Acta Materialia Inc.
Resumo:
The inference of gene regulatory networks gained within recent years a considerable interest in the biology and biomedical community. The purpose of this paper is to investigate the influence that environmental conditions can exhibit on the inference performance of network inference algorithms. Specifically, we study five network inference methods, Aracne, BC3NET, CLR, C3NET and MRNET, and compare the results for three different conditions: (I) observational gene expression data: normal environmental condition, (II) interventional gene expression data: growth in rich media, (III) interventional gene expression data: normal environmental condition interrupted by a positive spike-in stimulation. Overall, we find that different statistical inference methods lead to comparable, but condition-specific results. Further, our results suggest that non-steady-state data enhance the inferability of regulatory networks.
Resumo:
Despite the importance of gelatinous zooplankton as components of marine ecosystems, both ecologically and socio-economically, relatively little is known about population persistence or connectivity in jellyfish. In the present study, we employed a combination of nuclear microsatellite markers and sequence data from the mitochondrial cytochrome oxidase I (COI) gene to determine levels and patterns of population genetic structuring in the holoplanktonic jellyfish Pelagia noctiluca across the northeast Atlantic Ocean and Mediterranean Sea. Our results indicate a high degree of connectivity in P. noctiluca, with little evidence of geographical structuring of genetic variation. A small but significant differentiation of Atlantic Ocean and Mediterranean stocks was detected based on the microsatellite data, but no evidence of differentiation was observed with the mtDNA, probably due to the higher power of the microsatellites to detect low levels of genetic structuring. Two clearly distinct groups of genotypes were observed within the mtDNA COI, which probably diverged in the early Pleistocene, but with no evidence of geographical structuring. Palaeodistribution modelling of P. noctiluca at the Last Glacial Maximum (LGM; ca. 21 KYA) indicated large areas of suitable habitat south of the species’ current-day distribution, with little reduction in area. The congruent evidence for minimal genetic differentiation from the nuclear microsatellites and the mtDNA, coupled with the results of the palaeodistribution modelling, supports the idea of long-term population stability and connectivity, thus providing key insights into the population dynamics and demography of this important species
Resumo:
This work aims to design a synthetic construct that mimics the natural bone extracellular matrix through innovative approaches based on simultaneous type I collagen electrospinning and nanophased hydroxyapatite (nanoHA) electrospraying using non-denaturating conditions and non-toxic reagents. The morphological results, assessed using scanning electron microscopy and atomic force microscopy (AFM), showed a mesh of collagen nanofibers embedded with crystals of HA with fiber diameters within the nanometer range (30 nm), thus significantly lower than those reported in the literature, over 200 nm. The mechanical properties, assessed by nanoindentation using AFM, exhibited elastic moduli between 0.3 and 2 GPa. Fourier transformed infrared spectrometry confirmed the collagenous integrity as well as the presence of nanoHA in the composite. The network architecture allows cell access to both collagen nanofibers and HA crystals as in the natural bone environment. The inclusion of nanoHA agglomerates by electrospraying in type I collagen nanofibers improved the adhesion and metabolic activity of MC3T3-E1 osteoblasts. This new nanostructured collagen–nanoHA composite holds great potential for healing bone defects or as a functional membrane for guided bone tissue regeneration and in treating bone diseases.
Resumo:
In the pregnant mouse endometrium, collagen fibrillogenesis is characterized by the presence of very thick collagen fibrils which are topographically located exclusively within the decidualized stroma. This dynamic biological process is in part regulated by the small leucine-rich proteoglycans decorin and biglycan. In the present study we utilized wild-type (Dcn+/+) and decorin-deficient (Dcn-/-) time-pregnant mice to investigate the evolution of non-decidualized and decidualized collagen matrix in the uterine wall of these animals. Ultrastructural and morphometric analyses revealed that the organization of collagen fibrils in the pregnant endometrium of both non-decidualized and decidualized stroma showed a great variability of shape and size, regardless of the genotype. However, the decidualized endometrium from Dcn-/- mice contained fibrils with larger diameter and more irregular contours as compared to the wild-type littermates. In the Dcn-/- animals, the proportion of thin (10-50 nm) fibrils was also higher as compared to Dcn+/+ animals. On day 7 of pregnancy, biglycan was similarly localized in the decidualized endometrium in both genotypes. Lumican immunostaining was intense both in decidualized and non-decidualized stroma from Dcn-/- animals. The present results support previous findings suggesting that decorin participates in uterine collagen fibrillogenesis. In addition, we suggest that the absence of decorin disturbs the process of lateral assembly of thin fibrils, resulting in very thick collagen fibrils with irregular profiles. Our data further suggest that decorin, biglycan and lumican might play an interactive role in collagen fibrillogenesis in the mouse endometrium, a process modulated according to the stage of pregnancy.
Resumo:
Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury, but their role in chronic kidney diseases is still unknown. More specifically, it is not known whether MSCs halt fibrosis. The purpose of this work was to investigate the role of MSCs in fibrogenesis using a model of chronic renal failure. MSCs were obtained from the tibias and femurs of male Wistar-EPM rats. Female Wistar rats were subjected to the remnant model, and 2 vertical bar x vertical bar 10(5) MSCs were intravenously administrated to each rat every other week for 8 weeks or only once and followed for 12 weeks. SRY gene expression was observed in female rats treated with male MSCs, and immune localization of CD73(+)CD90(+) cells at 8 weeks was also assessed. Serum and urine analyses showed an amelioration of functional parameters in MSC-treated animals at 8 weeks, but not at 12 weeks. Masson`s trichrome and Sirius red staining demonstrated reduced levels of fibrosis in MSC-treated animals. These results were corroborated by reduced vimentin, type I collagen, transforming growth factor beta, fibroblast specific protein 1 (FSP-1), monocyte chemoattractant protein 1, and Smad3 mRNA expression and alpha smooth muscle actin and FSP-1 protein expression. Renal interleukin (IL)-6 and tumor necrosis factor alpha mRNA expression levels were significantly decreased after MSC treatment, whereas IL-4 and IL-10 expression levels were increased. All serum cytokine expression levels were decreased in MSC-treated animals. Taken together, these results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury. The immunosuppressive and remodeling properties of MSCs may be involved in the decreased fibrosis in the kidney. STEM CELLS 2009;27:3063-3073
Resumo:
In the present study porcine skin and bovine pericardium were used as a source of type I collagen. Both were submitted to an alkaline treatment and mineralized by the alternate soaking method. Thermal stability and extent of mineralization have been investigated using DSC and TG. After alkaline hydrolysis there is a decrease in thermal stability but mineralization stabilizes collagen structure. Thermogravimetric data have shown that the amount of hydroxyapatite present in bovine pericardium matrix (45%) was greater than on porcine skin matrix (20%). Presence of hydroxyapatite was confirmed by EDX.
Resumo:
PURPOSE: The infection is one of the main factors that affect the physiological evolution of the surgical wounds. The aim of this work is to evaluate the effects of fibroblast growth factor (FGFâ) and anti-FGFâ in the healing, synthesis and maturation of collagen when topically used on infected skin wounds of rats. METHODS: An experimental study was perfomed in 60 male Wistar rats. All animals were divided in two groups (A and B). Each group was divided in three subgroups A1, B1; A2, B2 and A3, B3. After anesthesia with pentobarbital, two open squared wounds (1cm2), 4cm distant to each other, were done in the dorsal skin of all the rats. In group A (n=30) the wounds were contaminated with multibacterial standard solution, and in group B(n=30) the wounds were maintained sterile. These wounds were named F1 (for inflammation analysis) and F2 (for collagen study). The open wounds of A1 and B1 rats were topically treated with saline solution, A2 and B2 were treated with FGFâ and subgroups A3 and B3 were treated with FGFâ and anti-FGFâ. The rats were observed until complete epitelization of F2 wounds for determination of healing time and the expression of types I and III collagen, using Picro Sirius Red staining. Inflammatory reaction in F1 wounds was studied using hematoxilineosin staining. The three variable was measured by the Image Pro-Plus Média Cybernetics software. The statistical analysis was performed by ANOVA and Tukey test, considering p<0.05 as significant. RESULTS: It was observed that infection retarded significantly (p<0.05) the time of wound scarring and the topical application of FCFb reverted the inhibition of healing caused by bacteria. The inflammatory reaction was greater in the subgroup B2 than in B1 and A3, and the difference was significant (p<0.05). It was observed greater expression of type I collagen in all the subgroups treated with FCFb, when compared with the untreated subgroups. Type III collagen was significantly decreased in wounds of B3 rats, comparing to the other subgroups. CONCLUSIONS: The FCFb accelerated the healing of open infected wounds and contributed with maturation of collagen, enhancing the type I collagen density. The anti-FCFb antibody was able to attenuate the production of both type I and III collagen
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nanocomposites created with polycarboxylic acid alone as a stabilization agent for prenucleation clusters-derived amorphous calcium phosphate exhibit nonperiodic apatite deposition. In the present study, we report the use of inorganic polyphosphate as a biomimetic analog of matrix phosphoprotein for directing poly(acrylic acid)-stabilized amorphous nano-precursor phases to assemble into periodic apatite-collagen nanocomposites. The sorption and desorption characteristics of sodium tripolyphosphate to type I collagen were examined. Periodic nanocomposite assembly with collagen as a template was demonstrated with TEM and SEM using a Portland cement-based resin composite and a phosphate-containing simulated body fluid. Apatite was detected within the collagen at 24 h and became more distinct at 48 h, with prenucleation clusters attaching to the collagen fibril surface during the initial infiltration stage. Apatite-collagen nanocomposites at 72 h were heavily mineralized with periodically arranged intrafibrillar apatite platelets. Defect-containing nanocomposites caused by desorption of TPP from collagen fibrils were observed in regions lacking the inorganic phase.
Resumo:
Introduction. Tendon injury is a major cause of lameness and decreased performance in athletic equines. Various therapies for tendonitis have been described; however, none of these therapies results in complete tissue regeneration, and the injury recurrence rate is high even after long recovery periods involving rest and physiotherapy. Methods. A lesion was induced with collagenase gel in the superficial digital flexor tendon in the center portion of the metacarpal region of eight equines of mixed breed. After two weeks, the lesions of the animals in the treated and control groups were treated through the intralesional administration of mesenchymal stem cells derived from adipose tissue (adMSCs) suspended in platelet concentrate (PC) and with phosphate buffered saline (PBS), respectively. Serial ultrasound analyses were performed every two weeks. After 16 weeks of therapy, a biopsy was performed for histopathological, immunohistochemical and gene expression (type I collagen (COL1A1), type III collagen (COL3A1), tenascin-C (TNC), tenomodulin (TNMD), and scleraxis (SCX)) analyses. Results: Differences in the ultrasound and histopathological analyses were observed between the groups. Improved results were reported in the group treated with adMSCs suspended in PC. There was no difference in the gene expression levels observed after the different treatments. The main results observed from the histopathological evaluation of the treated group were as follows: a prevention of the progression of the lesion, a greater organization of collagen fibers, and a decreased inflammatory infiltrate. A lack of progression of the lesion area and its percentage was observed in the ultrasound image, and increased blood flow was measured by Power Doppler. Conclusions: The use of adMSCs combined with PC for the therapy of experimentally induced tendonitis prevented the progression of the tendon lesion, as observed in the ultrasound examination, and resulted in a greater organization and decreased inflammation, as observed in the histopathological evaluation. These data demonstrate the therapeutic potential of this therapy for the treatment of equine tendonitis. © 2013 Carvalho et al.; licensee BioMed Central Ltd.