942 resultados para Hyperbolic geometry
Resumo:
OBJECTIVE: To verify if adaptive left ventricle (LV) characteristics are also present in individuals under 70 years of age with severe aortic stenosis (AS). METHODS: The study comprised 40 consecutive patients under 70 years of age with AS and no associated coronary artery disease, referred for valve surgery. Out of the 40 patients, 22 were men and 18 women, and the mean age was 49.8±14.3 years. Cardiac symptoms, presence of systemic hypertension (SH), functional class according to the New York Heart Association (NYHA), and valve lesion etiology were considered. LV cavity dimensions, ejection fraction (EF), fractional shortening (FS), mass (MS), and relative diastolic thickness (RDT) were examined by Doppler echocardiography. RESULTS: Fourteen (63.6%) men and 11 (61.6%) women were classified as NYHA class III/IV (p=0.70). There was no difference in the frequency of angina, syncope or dyspnea between genders. The incidence of SH was greater in women than in men (10 versus 2, p=0.0044). Women had a smaller LV end-diastolic diameter index (32.1±6.5 x 36.5±5.3mm/m², p=0.027), LV end-systolic diameter index (19.9±5.9 x 26.5±6.4mm/m², p=0.0022) and LV mass index (MS) (211.4±71.1 x 270.9±74.9g/m², p=0.017) when compared with men. EF (66.2±13.4 x 52.0±14.6%, p=0.0032), FS (37.6±10.7 x 27.9±9.6%, p=0.0046) and RDT (0.58±0.22 x 0.44±0.09, p=0.0095) were significantly greater in women than in men. CONCLUSION: It is the patient gender rather than age that influences left ventricular adaptive response to AS.
Resumo:
PURPOSE - To evaluate diastolic dysfunction (DD) in essential hypertension and the influence of age and cardiac geometry on this parameter. METHODS - Four hundred sixty essential hypertensive patients (HT) underwent Doppler echocardiography to obtain E/A wave ratio (E/A), atrial deceleration time (ADT), and isovolumetric relaxation time (IRT). All patients were grouped according to cardiac geometric patterns (NG - normal geometry; CR - concentric remodeling; CH- concentric hypertrophy; EH - eccentric hypertrophy) and to age (<40; 40 - 60; >60 years). One hundred six normotensives (NT) persons were also evaluated. RESULTS - A worsening of diastolic function in the HT compared with the NT, including HT with NG (E/A: NT - 1.38±0.03 vs HT - 1.27±0.02, p<0.01), was observed. A higher prevalence of DD occurred parallel to age and cardiac geometry also in the prehypertrophic groups (CR). Multiple regression analysis identified age as the most important predictor of DD (r²=0.30, p<0.01). CONCLUSION - DD was prevalent in this hypertensive population, being highly affected by age and less by heart structural parameters. DD is observed in incipient stages of hypertensive heart disease, and thus its early detection may help in the risk stratification of hypertensive patients.
Resumo:
Genuinely multidimensional schemes, hyperbolic systems, wave equations, Euler equations, evolution Galerkin schemes, space-time conservative methods, high order accuracy, shock solutions
Resumo:
Convex cone, toric variety, graph theory, electrochemical catalysis, oxidation of formic acid, feedback-loopsbifurcations, enzymatic catalysis, Peroxidase reaction, Shil'nikov chaos
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Habil.-Schr., 2010
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2013
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2014
Resumo:
We describe fractal tessellations of the complex plane that arise naturally from Cannon-Thurston maps associated to complete, hyperbolic, once-punctured-torus bundles. We determine the symmetry groups of these tessellations.
Resumo:
Let M be a compact hyperbolic 3-manifold with incompressible boundary. Consider a complete hyperbolic metric on int(M). To each geometrically finite end of int(M) are traditionnaly associated 3 different invariants : the hyperbolic metric associated to the conformal structure at infinity, the hyperbolic metric on the boundary of the convex core and the bending measured lamination of the convex core. In this note we show how invariants of different types can be realised in the different ends.
Resumo:
Boundary equilibrium bifurcations in piecewise smooth discontinuous systems are characterized by the collision of an equilibrium point with the discontinuity surface. Generically, these bifurcations are of codimension one, but there are scenarios where the phenomenon can be of higher codimension. Here, the possible collision of a non-hyperbolic equilibrium with the boundary in a two-parameter framework and the nonlinear phenomena associated with such collision are considered. By dealing with planar discontinuous (Filippov) systems, some of such phenomena are pointed out through specific representative cases. A methodology for obtaining the corresponding bi-parametric bifurcation sets is developed.
Resumo:
The first main result of the paper is a criterion for a partially commutative group G to be a domain. It allows us to reduce the study of algebraic sets over G to the study of irreducible algebraic sets, and reduce the elementary theory of G (of a coordinate group over G) to the elementary theories of the direct factors of G (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group H. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of H has quantifier elimination and that arbitrary first-order formulas lift from H to H * F, where F is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.
Resumo:
We prove that if f is a partially hyperbolic diffeomorphism on the compact manifold M with one dimensional center bundle, then the logarithm of the spectral radius of the map induced by f on the real homology groups of M is smaller or equal to the topological entropy of f. This is a particular case of the Shub's entropy conjecture, which claims that the same conclusion should be true for any C1 map on any compact manifold.
Resumo:
En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."