69 resultados para Hydrometeorological


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pressing scientific questions concerning the Greenland ice sheet's climatic sensitivity, hydrology, and contributions to current and future sea level rise require hydrological datasets to resolve. While direct observations of ice sheet meltwater losses can be obtained in terrestrial rivers draining the ice sheet and from lake levels, few such datasets exist. We present a new dataset of meltwater river discharge for the vicinity of Kangerlussuaq, Southwest Greenland. The dataset contains measurements of river stage and discharge for three sites along the Akuliarusiarsuup Kuua (Watson) River's northern tributary, with 30 minute temporal resolution between June 2008 and August 2010. Additional data of water temperature, air pressure, and lake water depth and temperature are also provided. Discharge data were measured at sites with near-ideal properties for such data collection. Regardless, high water bedload and turbulent flow introduce considerable uncertainty. These were constrained and quantified using statistical techniques, thereby providing a high quality dataset from this important site. The greatest data uncertainties are associated with streambed elevation change and measurements. Large portions of stream channels deepened according to statistical tests, but poor precision of streambed depth measurements also added uncertainty. Quality checked data are freely available for scientific use as supplementary online material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intense precipitation events (IPE) have been causing great social and economic losses in the affected regions. In the Amazon, these events can have serious impacts, primarily for populations living on the margins of its countless rivers, because when water levels are elevated, floods and/or inundations are generally observed. Thus, the main objective of this research is to study IPE, through Extreme Value Theory (EVT), to estimate return periods of these events and identify regions of the Brazilian Amazon where IPE have the largest values. The study was performed using daily rainfall data of the hydrometeorological network managed by the National Water Agency (Agência Nacional de Água) and the Meteorological Data Bank for Education and Research (Banco de Dados Meteorológicos para Ensino e Pesquisa) of the National Institute of Meteorology (Instituto Nacional de Meteorologia), covering the period 1983-2012. First, homogeneous rainfall regions were determined through cluster analysis, using the hierarchical agglomerative Ward method. Then synthetic series to represent the homogeneous regions were created. Next EVT, was applied in these series, through Generalized Extreme Value (GEV) and the Generalized Pareto Distribution (GPD). The goodness of fit of these distributions were evaluated by the application of the Kolmogorov-Smirnov test, which compares the cumulated empirical distributions with the theoretical ones. Finally, the composition technique was used to characterize the prevailing atmospheric patterns for the occurrence of IPE. The results suggest that the Brazilian Amazon has six pluvial homogeneous regions. It is expected more severe IPE to occur in the south and in the Amazon coast. More intense rainfall events are expected during the rainy or transitions seasons of each sub-region, with total daily precipitation of 146.1, 143.1 and 109.4 mm (GEV) and 201.6, 209.5 and 152.4 mm (GPD), at least once year, in the south, in the coast and in the northwest of the Brazilian Amazon, respectively. For the south Amazonia, the composition analysis revealed that IPE are associated with the configuration and formation of the South Atlantic Convergence Zone. Along the coast, intense precipitation events are associated with mesoscale systems, such Squall Lines. In Northwest Amazonia IPE are apparently associated with the Intertropical Convergence Zone and/or local convection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light rainfall is the baseline input to the annual water budget in mountainous landscapes through the tropics and at mid-latitudes. In the Southern Appalachians, the contribution from light rainfall ranges from 50-60% during wet years to 80-90% during dry years, with convective activity and tropical cyclone input providing most of the interannual variability. The Southern Appalachians is a region characterized by rich biodiversity that is vulnerable to land use/land cover changes due to its proximity to a rapidly growing population. Persistent near surface moisture and associated microclimates observed in this region has been well documented since the colonization of the area in terms of species health, fire frequency, and overall biodiversity. The overarching objective of this research is to elucidate the microphysics of light rainfall and the dynamics of low level moisture in the inner region of the Southern Appalachians during the warm season, with a focus on orographically mediated processes. The overarching research hypothesis is that physical processes leading to and governing the life cycle of orographic fog, low level clouds, and precipitation, and their interactions, are strongly tied to landform, land cover, and the diurnal cycles of flow patterns, radiative forcing, and surface fluxes at the ridge-valley scale. The following science questions will be addressed specifically: 1) How do orographic clouds and fog affect the hydrometeorological regime from event to annual scale and as a function of terrain characteristics and land cover?; 2) What are the source areas, governing processes, and relevant time-scales of near surface moisture convergence patterns in the region?; and 3) What are the four dimensional microphysical and dynamical characteristics, including variability and controlling factors and processes, of fog and light rainfall? The research was conducted with two major components: 1) ground-based high-quality observations using multi-sensor platforms and 2) interpretive numerical modeling guided by the analysis of the in situ data collection. Findings illuminate a high level of spatial – down to the ridge scale - and temporal – from event to annual scale - heterogeneity in observations, and a significant impact on the hydrological regime as a result of seeder-feeder interactions among fog, low level clouds, and stratiform rainfall that enhance coalescence efficiency and lead to significantly higher rainfall rates at the land surface. Specifically, results show that enhancement of an event up to one order of magnitude in short-term accumulation can occur as a result of concurrent fog presence. Results also show that events are modulated strongly by terrain characteristics including elevation, slope, geometry, and land cover. These factors produce interactions between highly localized flows and gradients of temperature and moisture with larger scale circulations. Resulting observations of DSD and rainfall patterns are stratified by region and altitude and exhibit clear diurnal and seasonal cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Central America is one of the most vulnerable regions to the adverse effects of climate change, due to the rise of frequency and intensity that hydrometeorological phenomena have occurred in recent years. In El Salvador 484 people died and 800,000 more were affected because these extreme events and economic losses reached up to 6.711 million dollars. According to the climate projections over the next 50 years in the territory, is expected that extreme events such as droughts and rainfall will intensify. Within the last 30 years, July of 2014 is considered the one with less rainfall. Meanwhile, Tropical Depression 12E in 2011 provoked an outstanding rainfall average of 1,137 mm, affecting more than 500,000 people; most of them live in the coastal zone. The death of 34 people and living economic losses of 840.4 million was recorded, equivalent to 4% of GDP. El Salvador has policies, national plans and strategies aimed to reducing vulnerability, promoting adaptation to these changes and more effective risk management. This paper compiles the impacts of climate variability in El Salvador and the efforts of the State on adaptation to improve environmental and social resilience.