996 resultados para Hydrological model
Resumo:
A presente dissertação desenvolveu um Sistema de Alerta de Enchentes para a Cidade de Marabá, localizada na confluência dos rios Itacaiúnas e Tocantins, a 440 km da cidade de Belém, capital do Estado do Pará. O Sistema de Alerta de Enchentes foi desenvolvido com base no modelo hidrológico MOD-4B incorporado a um Sistema de Informações Geográficas. Esse sistema permite prever as variações do nível do Rio Tocantins ao longo do ano, de modo a acompanhar a evolução da cheia com antecedência de 4 dias, o que torna possível uma ação eficiente da defesa civil. O modelo de previsão utilizou como referência as réguas linimétricas localizadas nos rios Tocantins e Araguaia nas cidades de Carolina e Conceição do Araguaia, distantes aproximadamente 225 e 270 km, respectivamente, da cidade de Marabá. O sistema utiliza o software de geoprocessamento ArcView 3.3, que teve implementada uma interface desenvolvida através da linguagem de programação orientada a objetos Avenue, com a finalidade de rodar o aplicativo do modelo hidrológico. O uso de menus e janelas customizados do sistema possibilitou o acesso a dados espaciais e tabelas de dados relacionais e/ou banco de dados cadastral, além de módulos de análise espacial e de visualização de dados geográficos em um Sistema de Informações Geográficas (SIG), possibilitando a previsão de enchentes na forma de mapas, tabelas e relatórios com a indicação das áreas inundadas para os períodos de 4, 3, 2 e 1 dia de antecedência do evento de enchente. O Sistema permitiu identificar os imóveis e as ruas atingidos, e possibilitará através de levantamentos futuros quantificar a população afetada e os prejuízos causados pelo desastre, facilitando que a defesa civil execute planos de ação para enfrentamento eficiente antes, durante e depois da ocorrência da enchente.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
With the accelerated urbanization process of Brazil from the 50s, there was a disorderly occupation of spaces and consequent soil sealing. Unlike this growth, the support capacity of urban environments has not evolved in the same way, generating negative environmental impacts to the citizens. Among these impacts are the effects of flooding. In order to minimize the negative effects of extreme precipitation over cities, the government invests in corrective measures, like compensatory techniques on urban drainage, which have as a basic principle the retention and infiltration of the rainfall, dampening the peak flow and runoff. An example of applying these techniques in urban areas are the detention basins, commonly called large pools. The hydraulic design of these structures is dependent of complex data and variables, and projects involving small areas generally use simplified methods for defining the reservoirs volume of the storage (Tassi, 2005). One of these methods is presented in this study, which relates to the percentage of soil sealing to the specific storage volume (m³/ha) in combination by applying the hydrological model of the Rational Method and analyzing regional rainfall and soil occupation over the basin. Within this context, the basin of the Wenzel stream, which is located amidst the urban area of Rio Claro/SP, also presents the problems related to human occupation in its valley. Thus, by the method presented has been adjusted a curve correlating the percentage of impermeable area and the specific volume of a detention basin. For the current situation of Wenzel Basin with 82% of impermeable area, and return period of 10 years, the specific volume is 262.1 m³/ha. The presented method is consistent with the results of other studies in the area, and the expression obtained allows estimating the volume of storage required to match hydrograph pre and post-occupancy. It presents itself as a useful tool in the planning stage of...
Resumo:
The objective of this work was to evaluate the sediment production in the initial part of the Pardo River Basin - Botucatu/SP from 1994 to 1999, using the mathematical hydrological model SWAT. It was used topographic maps and satellite data manipulated in GIS using the software SPRING 5.1.6. The simulation of sediment production was generated with the aid of an interface between the hydrological model SWAT 2009 with ArcView ®, version 9.3. The maps of Soil, Land Use and Digital Elevation Model (DEM) were generated in the GIS-SPRING 5.1.6 and exported to ArcSWAT 2009. The tabular data related to the parameters of soil and meteorological parameters were entered directly to the SWAT. The model allowed to estimate the sediment production. A sediment average production rate of 33.866 ton ha-1 over the six years of study was computed in the point of discharge of the basin.
Resumo:
Evapotranspiration (ET) plays an important role in global climate dynamics and in primary production of terrestrial ecosystems; it represents the mass and energy transfer from the land to atmosphere. Limitations to measuring ET at large scales using ground-based methods have motivated the development of satellite remote sensing techniques. The purpose of this work is to evaluate the accuracy of the SEBAL algorithm for estimating surface turbulent heat fluxes at regional scale, using 28 images from MODIS. SEBAL estimates are compared with eddy-covariance (EC) measurements and results from the hydrological model MGB-IPH. SEBAL instantaneous estimates of latent heat flux (LE) yielded r(2) = 0.64 and r(2) = 0.62 over sugarcane croplands and savannas when compared against in situ EC estimates. At the same sites, daily aggregated estimates of LE were r(2) = 0.76 and r(2) = 0.66, respectively. Energy balance closure showed that turbulent fluxes over sugarcane croplands were underestimated by 7% and 9% over savannas. Average daily ET from SEBAL is in close agreement with estimates from the hydrological model for an overlay of 38,100 km(2) (r(2) = 0.88). Inputs to which the algorithm is most sensitive are vegetation index (NDVI), gradient of temperature (dT) to compute sensible heat flux (H) and net radiation (Re). It was verified that SEBAL has a tendency to overestimate results both at local and regional scales probably because of low sensitivity to soil moisture and water stress. Nevertheless the results confirm the potential of the SEBAL algorithm, when used with MODIS images for estimating instantaneous LE and daily ET from large areas.
Resumo:
Tradizionalmente, l'obiettivo della calibrazione di un modello afflussi-deflussi è sempre stato quello di ottenere un set di parametri (o una distribuzione di probabilità dei parametri) che massimizzasse l'adattamento dei dati simulati alla realtà osservata, trattando parzialmente le finalità applicative del modello. Nel lavoro di tesi viene proposta una metodologia di calibrazione che trae spunto dell'evidenza che non sempre la corrispondenza tra dati osservati e simulati rappresenti il criterio più appropriato per calibrare un modello idrologico. Ai fini applicativi infatti, può risultare maggiormente utile una miglior rappresentazione di un determinato aspetto dell'idrogramma piuttosto che un altro. Il metodo di calibrazione che viene proposto mira a valutare le prestazioni del modello stimandone l'utilità nell'applicazione prevista. Tramite l'utilizzo di opportune funzioni, ad ogni passo temporale viene valutata l'utilità della simulazione ottenuta. La calibrazione viene quindi eseguita attraverso la massimizzazione di una funzione obiettivo costituita dalla somma delle utilità stimate nei singoli passi temporali. Le analisi mostrano come attraverso l'impiego di tali funzioni obiettivo sia possibile migliorare le prestazioni del modello laddove ritenute di maggior interesse per per le finalità applicative previste.
Resumo:
Climate change is expected to profoundly influence the hydrosphere of mountain ecosystems. The focus of current process-based research is centered on the reaction of glaciers and runoff to climate change; spatially explicit impacts on soil moisture remain widely neglected. We spatio-temporally analyzed the impact of the climate on soil moisture in a mesoscale high mountain catchment to facilitate the development of mitigation and adaptation strategies at the level of vegetation patterns. Two regional climate models were downscaled using three different approaches (statistical downscaling, delta change, and direct use) to drive a hydrological model (WaSiM-ETH) for reference and scenario period (1960–1990 and 2070–2100), resulting in an ensemble forecast of six members. For all ensembles members we found large changes in temperature, resulting in decreasing snow and ice storage and earlier runoff, but only small changes in evapotranspiration. The occurrence of downscaled dry spells was found to fluctuate greatly, causing soil moisture depletion and drought stress potential to show high variability in both space and time. In general, the choice of the downscaling approach had a stronger influence on the results than the applied regional climate model. All of the results indicate that summer soil moisture decreases, which leads to more frequent declines below a critical soil moisture level and an advanced evapotranspiration deficit. Forests up to an elevation of 1800 m a.s.l. are likely to be threatened the most, while alpine areas and most pastures remain nearly unaffected. Nevertheless, the ensemble variability was found to be extremely high and should be interpreted as a bandwidth of possible future drought stress situations.
Resumo:
This study aimed at analysing the hydrological changes in the Lake Kivu Basin over the last seven decades with focus on the response of the lake water level to meteorological factors and hydropower dam construction. Historical precipitation and lake water levels were acquired from literature, local agencies and from global databases in order to compile a coherent dataset. The net lake inflow was modelled using a soil water balance model and the water levels were reconstructed using a parsimonious lake water balance model. The soil water balance shows that 370 mm yr−1 (25%) of the precipitation in the catchment contributes to the runoff and baseflow whereas 1100 mm yr−1 (75%) contributes to the evapotranspiration. A review of the lake water balance resulted in the following estimates of hydrological contributions: 55%, 25%, and 20% of the overall inputs from precipitation, surface inflows, and subaquatic groundwater discharge, respectively. The overall losses were 58% and 42% for lake surface evaporation and outflow discharge, respectively. The hydrological model used indicated a remarkable sensitivity of the lake water levels to hydrometeorological variability up to 1977, when the outflow bed was artificially widened.
Resumo:
Recent observed hydro-climatic changes in mountainous areas are of concern as they may directly affect capacity to fulfill water needs. The canton of Vaud in Western Switzerland is an example of such a region as it has experienced water shortage episodes during the past decade. Based on an integrated modeling framework, this study explores how hydro-climatic conditions and water needs could evolve in mountain environments and assesses their potential impacts on water stress by the 2060 horizon. Flows were simulated based on a daily semi-distributed hydrological model. Future changes were derived from Swiss climate scenarios based on two regional climate models. Regarding water needs, the authorities of the canton of Vaud provided a population growth scenario while irrigation and livestock trends followed a business-as-usual scenario. Currently, the canton of Vaud experiences moderate water stress from June to August, except in its Alpine area where no stress is noted. In the 2060 horizon, water needs could exceed 80% of the rivers' available resources in low- to mid-altitude environments in mid-summer. This arises from the combination of drier and warmer climate that leads to longer and more severe low flows, and increasing urban (+ 40%) and irrigation (+ 25%) water needs. Highlighting regional differences supports the development of sustainable development pathways to reduce water tensions. Based on a quantitative assessment, this study also calls for broader impact studies including water quality issues.
Resumo:
The floods that occurred on the Aare and Rhine rivers in May 2015 and the mostly successful handling of this event in terms of flood protection measures are a good reminder of how important it is to comprehend the causes and processes involved in such natural hazards. While the needed data series of gauge measurements and peak discharge calculations reach back to the 19th century, historical records dating further back in time can provide additional and useful information to help understanding extreme flood events and to evaluate prevention measures such as river dams and corrections undertaken prior to instrumental measurements. In my PhD project I will use a wide range of historical sources to assess and quantify past extreme flood events. It is part of the SNF-funded project “Reconstruction of the Genesis, Process and Impact of Major Pre-instrumental Flood Events of Major Swiss Rivers Including a Peak Discharge Quantification” and will cover the research locations Fribourg (Saane R.), Burgdorf (Emme R.), Thun, Bern (both Aare R.), and the Lake of Constance at the locations Lindau, Constance and Rorschach. My main goals are to provide a long time series of quantitative data for extreme flood events, to discuss the occurring changes in these data, and to evaluate the impact of the aforementioned human influences on the drainage system. Extracting information given in account books from the towns of Basel and Solothurn may also enable me to assess the frequency and seasonality of less severe river floods. Finally, historical information will be used for remodeling the historical hydrological regime to homogenize the historical data series to modern day conditions and thus make it comparable to the data provided by instrumental measurements. The method I will apply for processing all information provided by historical sources such as chronicles, newspapers, institutional records, as well as flood marks, paintings and archeological evidence has been developed and successfully applied to the site of Basel by Wetter et al. (2011). They have also shown that data homogenization is possible by reconstructing previous stream flow conditions using historical river profiles and by carefully observing and re-constructing human changes of the river bed and its surroundings. Taken all information into account, peak discharges for past extreme flood events will be calculated with a one-dimensional hydrological model.
Resumo:
El objetivo del presente trabajo fue determinar la Evapotranspiración real (ETR) a nivel regional utilizando la información del satélite meteorológico NOAA-AVHRR y comparar los resultados obtenidos con los calculados a partir de un modelo de simulación de balance hídrico. Para la estimación de la ETR se analizaron 30 imágenes que abarcan el oasis Norte de Mendoza. Con la información de los canales C1 (Visible) y C2 (IRC) se obtuvo el índice verde normalizado (NDVI), a través del cual se siguió la evolución anual de la vegetación y con la correspondiente al Infrarrojo térmico (C4 y C5) se calculó la Temperatura de superficie (Ts) por el método Split - Windows Luego se vinculó la Ts calculada por teledetección con la temperatura del aire (Ta), para finalmente calcular la suma acumulada de las diferencias entre Ts y Ta, conocida como SDD (stress degree day) que permite estimar globalmente las características de stress hídrico a nivel regional. Conociendo (Ts-Ta) se estimó la ETR a partir de la radiación neta y de los coeficientes A y B que se estimaron según las características de la cobertura vegetal, aplicando una relación simplificada a partir del balance de energía, desarrollado por Jackson (1977) y Seguin (1983) según la ecuación: ETR = Rn + A -B ( Ts - Ta ) Posteriormente, se incluyó en los cálculos los valores de Emisividad y se hizo variar el coeficiente B de acuerdo a la ocupación del suelo en cada uno de los polígonos en que fue dividida el área de estudio. En la etapa final se compararon estadísticamente los datos de ETR estimados por los distintos métodos con los simulados por el modelo y se obtuvo como conclusión final que: la estimación de la ETR a nivel regional mediante datos satelitales, se adapta muy bien a la mayoría de los casos y es sencilla de calcular, por lo que la metodología desarrollada es fácilmente extrapolable a otros oasis de la región.
Resumo:
Data compiled within the IMPENSO project. The Impact of ENSO on Sustainable Water Management and the Decision-Making Community at a Rainforest Margin in Indonesia (IMPENSO), http://www.gwdg.de/~impenso, was a German-Indonesian research project (2003-2007) that has studied the impact of ENSO (El Nino-Southern Oscillation) on the water resources and the agricultural production in the PALU RIVER watershed in Central Sulawesi. ENSO is a climate variability that causes serious droughts in Indonesia and other countries of South-East Asia. The last ENSO event occurred in 1997. As in other regions, many farmers in Central Sulawesi suffered from reduced crop yields and lost their livestock. A better prediction of ENSO and the development of coping strategies would help local communities mitigate the impact of ENSO on rural livelihoods and food security. The IMPENSO project deals with the impact of the climate variability ENSO (El Niño Southern Oscillation) on water resource management and the local communities in the Palu River watershed of Central Sulawesi, Indonesia. The project consists of three interrelated sub-projects, which study the local and regional manifestation of ENSO using the Regional Climate Models REMO and GESIMA (Sub-project A), quantify the impact of ENSO on the availability of water for agriculture and other uses, using the distributed hydrological model WaSiM-ETH (Sub-project B), and analyze the socio-economic impact and the policy implications of ENSO on the basis of a production function analysis, a household vulnerability analysis, and a linear programming model (Sub-project C). The models used in the three sub-projects will be integrated to simulate joint scenarios that are defined in collaboration with local stakeholders and are relevant for the design of coping strategies.
Resumo:
An important step to assess water availability is to have monthly time series representative of the current situation. In this context, a simple methodology is presented for application in large-scale studies in regions where a properly calibrated hydrologic model is not available, using the output variables simulated by regional climate models (RCMs) of the European project PRUDENCE under current climate conditions (period 1961–1990). The methodology compares different interpolation methods and alternatives to generate annual times series that minimise the bias with respect to observed values. The objective is to identify the best alternative to obtain bias-corrected, monthly runoff time series from the output of RCM simulations. This study uses information from 338 basins in Spain that cover the entire mainland territory and whose observed values of natural runoff have been estimated by the distributed hydrological model SIMPA. Four interpolation methods for downscaling runoff to the basin scale from 10 RCMs are compared with emphasis on the ability of each method to reproduce the observed behaviour of this variable. The alternatives consider the use of the direct runoff of the RCMs and the mean annual runoff calculated using five functional forms of the aridity index, defined as the ratio between potential evapotranspiration and precipitation. In addition, the comparison with respect to the global runoff reference of the UNH/GRDC dataset is evaluated, as a contrast of the “best estimator” of current runoff on a large scale. Results show that the bias is minimised using the direct original interpolation method and the best alternative for bias correction of the monthly direct runoff time series of RCMs is the UNH/GRDC dataset, although the formula proposed by Schreiber (1904) also gives good results
Resumo:
Esta Tesis realiza una contribución metodológica al estudio del impacto del cambio climático sobre los usos del agua, centrándose particularmente en la agricultura. Tomando en consideración su naturaleza distinta, la metodología aborda de forma integral los impactos sobre la agricultura de secano y la agricultura de regadío. Para ello incorpora diferentes modelos agrícolas y de agua que conjuntamente con las simulaciones de los escenarios climáticos permiten determinar indicadores de impacto basados en la productividad de los cultivos, para el caso de la agricultura de secano, e indicadores de impacto basados en la disponibilidad de agua para irrigación, para el caso de la agricultura de regadío. La metodología toma en consideración el efecto de la variabilidad climática en la agricultura, evaluando las necesidades de adaptación y gestión asociadas a los impactos medios y a la variabilidad en la productividad de los cultivos y el efecto de la variabilidad hidrológica en la disponibilidad de agua para regadío. Considerando la gran cantidad de información proporcionada por las salidas de las simulaciones de los escenarios climáticos y su complejidad para procesarla, se ha desarrollado una herramienta de cálculo automatizada que integra diferentes escenarios climáticos, métodos y modelos que permiten abordar el impacto del cambio climático sobre la agricultura, a escala de grandes extensiones. El procedimiento metodológico parte del análisis de los escenarios climáticos en situación actual (1961-1990) y futura (2071-2100) para determinar su fiabilidad y conocer qué dicen exactamente las proyecciones climáticas a cerca de los impactos esperados en las principales variables que intervienen en el ciclo hidrológico. El análisis hidrológico se desarrolla en los ámbitos territoriales de la planificación hidrológica en España, considerando la disponibilidad de información para validar los resultados en escenario de control. Se utilizan como datos observados las series de escorrentía en régimen natural estimadas el modelo hidrológico SIMPA que está calibrado en la totalidad del territorio español. Al trabajar a escala de grandes extensiones, la limitada disponibilidad de datos o la falta de modelos hidrológicos correctamente calibrados para obtener los valores de escorrentía, muchas veces dificulta el proceso de evaluación, por tanto, en este estudio se plantea una metodología que compara diferentes métodos de interpolación y alternativas para generar series anuales de escorrentía que minimicen el sesgo con respecto a los valores observados. Así, en base a la alternativa que genera los mejores resultados, se obtienen series mensuales corregidas a partir de las simulaciones de los modelos climáticos regionales (MCR). Se comparan cuatro métodos de interpolación para obtener los valores de las variables a escala de cuenca hidrográfica, haciendo énfasis en la capacidad de cada método para reproducir los valores observados. Las alternativas utilizadas consideran la utilización de la escorrentía directa simulada por los MCR y la escorrentía media anual calculada utilizando cinco fórmulas climatológicas basadas en el índice de aridez. Los resultados se comparan además con la escorrentía global de referencia proporcionada por la UNH/GRDC que en la actualidad es el “mejor estimador” de la escorrentía actual a gran escala. El impacto del cambio climático en la agricultura de secano se evalúa considerando el efecto combinado de los riesgos asociados a las anomalías dadas por los cambios en la media y la variabilidad de la productividad de los cultivos en las regiones agroclimáticas de Europa. Este procedimiento facilita la determinación de las necesidades de adaptación y la identificación de los impactos regionales que deben ser abordados con mayor urgencia en función de los riesgos y oportunidades identificadas. Para ello se utilizan funciones regionales de productividad que han sido desarrolladas y calibradas en estudios previos en el ámbito europeo. Para el caso de la agricultura de regadío, se utiliza la disponibilidad de agua para irrigación como un indicador del impacto bajo escenarios de cambio climático. Considerando que la mayoría de estudios se han centrado en evaluar la disponibilidad de agua en régimen natural, en este trabajo se incorpora el efecto de las infraestructuras hidráulicas al momento de calcular el recurso disponible bajo escenarios de cambio climático Este análisis se desarrolla en el ámbito español considerando la disponibilidad de información, tanto de las aportaciones como de los modelos de explotación de los sistemas hidráulicos. Para ello se utiliza el modelo de gestión de recursos hídricos WAAPA (Water Availability and Adaptation Policy Assessment) que permite calcular la máxima demanda que puede atenderse bajo determinados criterios de garantía. Se utiliza las series mensuales de escorrentía observadas y las series mensuales de escorrentía corregidas por la metodología previamente planteada con el objeto de evaluar la disponibilidad de agua en escenario de control. Se construyen proyecciones climáticas utilizando los cambios en los valores medios y la variabilidad de las aportaciones simuladas por los MCR y también utilizando una fórmula climatológica basada en el índice de aridez. Se evalúan las necesidades de gestión en términos de la satisfacción de las demandas de agua para irrigación a través de la comparación entre la disponibilidad de agua en situación actual y la disponibilidad de agua bajo escenarios de cambio climático. Finalmente, mediante el desarrollo de una herramienta de cálculo que facilita el manejo y automatización de una gran cantidad de información compleja obtenida de las simulaciones de los MCR se obtiene un proceso metodológico que evalúa de forma integral el impacto del cambio climático sobre la agricultura a escala de grandes extensiones, y a la vez permite determinar las necesidades de adaptación y gestión en función de las prioridades identificadas. ABSTRACT This thesis presents a methodological contribution for studying the impact of climate change on water use, focusing particularly on agriculture. Taking into account the different nature of the agriculture, this methodology addresses the impacts on rainfed and irrigated agriculture, integrating agricultural and water planning models with climate change simulations scenarios in order to determine impact indicators based on crop productivity and water availability for irrigation, respectively. The methodology incorporates the effect of climate variability on agriculture, assessing adaptation and management needs associated with mean impacts, variability in crop productivity and the effect of hydrologic variability on water availability for irrigation. Considering the vast amount of information provided by the outputs of the regional climate model (RCM) simulations and also its complexity for processing it, a tool has been developed to integrate different climate scenarios, methods and models to address the impact of climate change on agriculture at large scale. Firstly, a hydrological analysis of the climate change scenarios is performed under current (1961-1990) and future (2071-2100) situation in order to know exactly what the models projections say about the expected impact on the main variables involved in the hydrological cycle. Due to the availability of information for validating the results in current situation, the hydrological analysis is developed in the territorial areas of water planning in Spain, where the values of naturalized runoff have been estimated by the hydrological model SIMPA, which are used as observed data. By working in large-scale studies, the limited availability of data or lack of properly calibrated hydrological model makes difficult to obtain runoff time series. So as, a methodology is proposed to compare different interpolation methods and alternatives to generate annual times series that minimize the bias with respect to observed values. Thus, the best alternative is selected in order to obtain bias-corrected monthly time series from the RCM simulations. Four interpolation methods for downscaling runoff to the basin scale from different RCM are compared with emphasis on the ability of each method to reproduce the observed behavior of this variable. The alternatives consider the use of the direct runoff of the RCMs and the mean annual runoff calculated using five functional forms of the aridity index. The results are also compared with the global runoff reference provided by the UNH/GRDC dataset, as a contrast of the “best estimator” of current runoff on a large scale. Secondly, the impact of climate change on rainfed agriculture is assessed considering the combined effect of the risks associated with anomalies given by changes in the mean and variability of crop productivity in the agro-climatic regions of Europe. This procedure allows determining adaptation needs based on the regional impacts that must be addressed with greater urgency in light of the risks and opportunities identified. Statistical models of productivity response are used for this purpose which have been developed and calibrated in previous European study. Thirdly, the impact of climate change on irrigated agriculture is evaluated considering the water availability for irrigation as an indicator of the impact. Given that most studies have focused on assessing water availability in natural regime, the effect of regulation is incorporated in this approach. The analysis is developed in the Spanish territory considering the available information of the observed stream flows and the regulation system. The Water Availability and Adaptation Policy Assessment (WAAPA) model is used in this study, which allows obtaining the maximum demand that could be supplied under certain conditions (demand seasonal distribution, water supply system management, and reliability criteria) for different policy alternatives. The monthly bias corrected time series obtained by previous methodology are used in order to assess water availability in current situation. Climate change projections are constructed taking into account the variation in mean and coefficient of variation simulated by the RCM. The management needs are determined by the agricultural demands satisfaction through the comparison between water availability under current conditions and under climate change projections. Therefore, the methodology allows evaluating the impact of climate change on agriculture to large scale, using a tool that facilitates the process of a large amount of complex information provided by the RCM simulations, in order to determine the adaptation and management needs in accordance with the priorities of the indentified impacts.
Resumo:
Water balance simulation in cropping systems is a very useful tool to study how water can be used efficiently. However this requires that models simulate an accurate water balance. Comparing model results with field observations will provide information on the performance of the models. The objective of this study was to test the performance of DSSAT model in simulating the water balance by comparing the simulations with observed measurements. The soil water balance in DSSAT uses a one dimensional ?tipping bucket? soil water balance approach where available soil water is determined by the drained upper limit (DUL), lower limit (LL) and saturated water content (SAT). A continuous weighing lysimeter was used to get the observed values of drainage and evapotranspiration (ET). An automated agrometeorological weather station close to the lisymeter was also used to record the climatic data. The model simulated accurately the soil water content after the optimization of the soil parameters. However it was found the inability of the model to capture small changes in daily drainage and ET. For that reason simulated cumulative values had larger errors as the time passed by. These results suggested the need to compare outputs of DSSAT and some hydrological model that simulates soil water movement with a more mechanistic approach. The comparison of the two models will allow us to find which mechanism can be modified or incorporated in DSSAT model to improve the simulations.