859 resultados para Hydrological forecasting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to compare the shift in frequency distribution and skill of seasonal climate forecasting of both streamflow and rainfall in eastern Australia based on the Southern Oscillation Index (SOI) Phase system. Recent advances in seasonal forecasting of climate variables have highlighted opportunities for improving decision making in natural resources management. Forecasting of rainfall probabilities for different regions in Australia is available, but the use of similar forecasts for water resource supply has not been developed. The use of streamflow forecasts may provide better information for decision-making in irrigation supply and flow management for improved ecological outcomes. To examine the relative efficacy of seasonal forecasting of streamflow and rainfall, the shift in probability distributions and the forecast skill were evaluated using the Wilcoxon rank-sum test and the linear error in probability space (LEPS) skill score, respectively, at three river gauging stations in the Border Rivers Catchment of the Murray-Darling Basin in eastern Australia. A comparison of rainfall and streamflow distributions confirms higher statistical significance in the shift of streamflow distribution than that in rainfall distribution. Moreover, streamflow distribution showed greater skill of forecasting with 0-3 month lead time, compared to rainfall distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To facilitate marketing and export, the Australian macadamia industry requires accurate crop forecasts. Each year, two levels of crop predictions are produced for this industry. The first is an overall longer-term forecast based on tree census data of growers in the Australian Macadamia Society (AMS). This data set currently accounts for around 70% of total production, and is supplemented by our best estimates of non-AMS orchards. Given these total tree numbers, average yields per tree are needed to complete the long-term forecasts. Yields from regional variety trials were initially used, but were found to be consistently higher than the average yields that growers were obtaining. Hence, a statistical model was developed using growers' historical yields, also taken from the AMS database. This model accounted for the effects of tree age, variety, year, region and tree spacing, and explained 65% of the total variation in the yield per tree data. The second level of crop prediction is an annual climate adjustment of these overall long-term estimates, taking into account the expected effects on production of the previous year's climate. This adjustment is based on relative historical yields, measured as the percentage deviance between expected and actual production. The dominant climatic variables are observed temperature, evaporation, solar radiation and modelled water stress. Initially, a number of alternate statistical models showed good agreement within the historical data, with jack-knife cross-validation R2 values of 96% or better. However, forecasts varied quite widely between these alternate models. Exploratory multivariate analyses and nearest-neighbour methods were used to investigate these differences. For 2001-2003, the overall forecasts were in the right direction (when compared with the long-term expected values), but were over-estimates. In 2004 the forecast was well under the observed production, and in 2005 the revised models produced a forecast within 5.1% of the actual production. Over the first five years of forecasting, the absolute deviance for the climate-adjustment models averaged 10.1%, just outside the targeted objective of 10%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Better Macadamia crop forecasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continually expanding macadamia industry needs an accurate crop forecasting system to allow it to develop effective crop handling and marketing strategies, particularly when the industry faces recurring cycles of unsustainably high and low commodity prices. This project aims to provide the AMS with a robust, reliable predictive model of national crop volume within 10% of the actual crop by 1 April each year by factoring known seasonal, environmental, cultural, climatic, management and biological constraints, together with the existing AMS database which includes data on tree numbers, tree age, variety, location and previous season's production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Northern peatlands are thought to store one third of all soil carbon (C). Besides the C sink function, peatlands are one of the largest natural sources of methane (CH4) to the atmosphere. Climate change may affect the C gas dynamics as well as the labile C pool. Because the peatland C sequestration and CH4 emissions are governed by high water levels, changes in hydrology are seen as the driving factor in peatland ecosystem change. This study aimed to quantify the carbon dioxide (CO2) and CH4 dynamics of a fen ecosystem at different spatial scales: plant community components scale, plant community scale and ecosystem scale, under hydrologically normal and water level drawdown conditions. C gas exchange was measured in two fens in southern Finland applying static chamber and eddy covariance techniques. During hydrologically normal conditions, the ecosystem was a CO2 sink and CH4 source to the atmosphere. Sphagnum mosses and sedges were the most important contributors to the community photosynthesis. The presence of sedges had a major positive impact on CH4 emissions while dwarf shrubs had a slightly attenuating impact. C fluxes varied considerably between the plant communities. Therefore, their proportions determined the ecosystem scale fluxes. An experimental water level drawdown markedly reduced the photosynthesis and respiration of sedges and Sphagnum mosses and benefited shrubs. Consequently, changes were smaller at the ecosystem scale than at the plant group scale. The decrease in photosynthesis and the increase in respiration, mostly peat respiration, made the fen a smaller CO2 sink. CH4 fluxes were significantly lowered, close to zero. The impact of natural droughts was similar to, although more modest than, the impact of the experimental water level drawdown. The results are applicable to the short term impacts of the water level drawdown and to climatic conditions in which droughts become more frequent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) forests dominate in Finnish Lapland. The need to study the effect of both soil factors and site preparation on the performance of planted Scots pine has increased due to the problems encountered in reforestation, especially on mesic and moist, formerly spruce-dominated sites. The present thesis examines soil hydrological properties and conditions, and effect of site preparation on them on 10 pine- and 10 spruce-dominated upland forest sites. Finally, the effects of both the site preparation and reforestation methods, and soil hydrology on the long-term performance of planted Scots pine are summarized. The results showed that pine and spruce sites differ significantly in their soil physical properties. Under field capacity or wetter soil moisture conditions, planted pines presumably suffer from excessive soil water and poor soil aeration on most of the originally spruce sites, but not on the pine sites. The results also suggested that site preparation affects the soil-water regime and thus prerequisites for forest growth over two decades after site preparation. High variation in the survival and mean height of planted pine was found. The study suggested that on spruce sites, pine survival is the lowest on sites that dry out slowly after rainfall events, and that height growth is the fastest on soils that reach favourable aeration conditions for root growth soon after saturation, and/or where the average air-filled porosity near field capacity is large enough for good root growth. Survival, but not mean height can be enhanced by employing intensive site preparation methods on spruce sites. On coarser-textured pine sites, site preparation methods don t affect survival, but methods affecting soil fertility, such as prescribed burning and ploughing, seem to enhance the height growth of planted Scots pines over several decades. The use of soil water content in situ as the sole criterion for sites suitable for pine reforestation was tested and found to be a relatively uncertain parameter. The thesis identified new potential soil variables, which should be tested using other data in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological forecasting, defined as quantified probabilistic prediction of timings and degree of change in the technological parameters, capabilities desirability or needs at different times in the future, is applied to birth control technology (BCT) as a means of revealing the paths of most promising research through identifying the necessary points for breakthroughs. The present status of BCT in the areas of pills and the IUD, male contraceptives, immumological approaches, post-coital pills, abortion, sterilization, luteolytic agents, laser technologies, and control of the sex of the child, are each summarized and evaluated in turn. Fine mapping is done to identify the most potentially promising areas of BCT. These include efforts to make oral contraception easier, improvement of the design of the IUD, clinical evaluation of the male contraceptive danazol, the effecting of biochemical changes in the seminal fluid, and researching of immunological approaches and the effects of other new drugs such as prostaglandins. The areas that require immediate and large research inputs are oral contraception and the IUD. On the basis of population and technological forecasts, it is deduced that research efforts could most effectively aid countries like India through the immediate production of an oral contraceptive pill or IUD with long-lasting effects. Development of a pill for males or an immunization against pre gnancy would also have a significant impact. However, the major impediment to birth control programs to date is attitudes, which must be changed through education.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variables, which are either sparse in resolution (e. g. soil moisture) or averaged over large regions (e. g. runoff). A combination of the distributed hydrological model (DHM) and remote sensing (RS) has the potential to improve resolution. Data assimilation schemes can optimally combine DHM and RS. Retrieval of hydrological variables (e. g. soil moisture) from remote sensing and assimilating it in hydrological model requires validation of algorithms using field studies. Here we present a review of methodologies developed to assimilate RS in DHM and demonstrate the application for soil moisture in a small experimental watershed in south India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improved forecasting of urban rail patronage is essential for effective policy development and efficient planning for new rail infrastructure. Past modelling and forecasting of urban rail patronage has been based on legacy modelling approaches and often conducted at the general level of public transport demand, rather than being specific to urban rail. This project canvassed current Australian practice and international best practice to develop and estimate time series and cross-sectional models of rail patronage for Australian mainland state capital cities. This involved the implementation of a large online survey of rail riders and non-riders for each of the state capital cities, thereby resulting in a comprehensive database of respondent socio-economic profiles, travel experience, attitudes to rail and other modes of travel, together with stated preference responses to a wide range of urban travel scenarios. Estimation of the models provided a demonstration of their ability to provide information on the major influences on the urban rail travel decision. Rail fares, congestion and rail service supply all have a strong influence on rail patronage, while a number of less significant factors such as fuel price and access to a motor vehicle are also influential. Of note, too, is the relative homogeneity of rail user profiles across the state capitals. Rail users tended to have higher incomes and education levels. They are also younger and more likely to be in full-time employment than non-rail users. The project analysis reported here represents only a small proportion of what could be accomplished utilising the survey database. More comprehensive investigation was beyond the scope of the project and has been left for future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting models. The key ingredient of the success of this simple model is the effective use of lagged information by allowing for interaction between seasonal patterns and intra-day dependencies. Although the model is built using data for the Queensland region of Australia, the method is completely generic and applicable to any load forecasting problem. The model’s forecasting ability is assessed by means of the mean absolute percentage error (MAPE). For day-ahead forecast, the MAPE returned by the model over a period of 11 years is an impressive 1.36%. The forecast accuracy of the model is compared with a number of benchmarks including three popular alternatives and one industrial standard reported by the Australia Energy Market Operator (AEMO). The performance of the model developed in this paper is superior to all benchmarks and outperforms the AEMO forecasts by about a third in terms of the MAPE criterion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yhteenveto: Mitä hydrologiset mallit kertovat ilmaston muutoksesta?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yhteenveto: Vesistömalleihin perustuva vesistöjen seuranta- ja ennustejärjestelmä vesi- ja ympäristöhallinnossa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, focus of real estate investment has expanded from the building-specific level to the aggregate portfolio level. The portfolio perspective requires investment analysis for real estate which is comparable with that of other asset classes, such as stocks and bonds. Thus, despite its distinctive features, such as heterogeneity, high unit value, illiquidity and the use of valuations to measure performance, real estate should not be considered in isolation. This means that techniques which are widely used for other assets classes can also be applied to real estate. An important part of investment strategies which support decisions on multi-asset portfolios is identifying the fundamentals of movements in property rents and returns, and predicting them on the basis of these fundamentals. The main objective of this thesis is to find the key drivers and the best methods for modelling and forecasting property rents and returns in markets which have experienced structural changes. The Finnish property market, which is a small European market with structural changes and limited property data, is used as a case study. The findings in the thesis show that is it possible to use modern econometric tools for modelling and forecasting property markets. The thesis consists of an introduction part and four essays. Essays 1 and 3 model Helsinki office rents and returns, and assess the suitability of alternative techniques for forecasting these series. Simple time series techniques are able to account for structural changes in the way markets operate, and thus provide the best forecasting tool. Theory-based econometric models, in particular error correction models, which are constrained by long-run information, are better for explaining past movements in rents and returns than for predicting their future movements. Essay 2 proceeds by examining the key drivers of rent movements for several property types in a number of Finnish property markets. The essay shows that commercial rents in local markets can be modelled using national macroeconomic variables and a panel approach. Finally, Essay 4 investigates whether forecasting models can be improved by accounting for asymmetric responses of office returns to the business cycle. The essay finds that the forecast performance of time series models can be improved by introducing asymmetries, and the improvement is sufficient to justify the extra computational time and effort associated with the application of these techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A diffusion/replacement model for new consumer durables designed to be used as a long-term forecasting tool is developed. The model simulates new demand as well as replacement demand over time. The model is called DEMSIM and is built upon a counteractive adoption model specifying the basic forces affecting the adoption behaviour of individual consumers. These forces are the promoting forces and the resisting forces. The promoting forces are further divided into internal and external influences. These influences are operationalized within a multi-segmental diffusion model generating the adoption behaviour of the consumers in each segment as an expected value. This diffusion model is combined with a replacement model built upon the same segmental structure as the diffusion model. This model generates, in turn, the expected replacement behaviour in each segment. To be able to use DEMSIM as a forecasting tool in early stages of a diffusion process estimates of the model parameters are needed as soon as possible after product launch. However, traditional statistical techniques are not very helpful in estimating such parameters in early stages of a diffusion process. To enable early parameter calibration an optimization algorithm is developed by which the main parameters of the diffusion model can be estimated on the basis of very few sales observations. The optimization is carried out in iterative simulation runs. Empirical validations using the optimization algorithm reveal that the diffusion model performs well in early long-term sales forecasts, especially as it comes to the timing of future sales peaks.