932 resultados para Hydrated ethanol fuel


Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the introduction of the mid-level ethanol blend gasoline fuel for commercial sale, the compatibility of different off-road engines is needed. This report details the test study of using one mid-level ethanol fuel in a two stroke hand held gasoline engine used to power line trimmers. The study sponsored by E3 is to test the effectiveness of an aftermarket spark plug from E3 Spark Plug when using a mid-level ethanol blend gasoline. A 15% ethanol by volume (E15) is the test mid-level ethanol used and the 10% ethanol by volume (E10) was used as the baseline fuel. The testing comprises running the engine at different load points and throttle positions to evaluate the cylinder head temperature, exhaust temperature and engine speed. Raw gas emissions were also measured to determine the impact of the performance spark plug. The low calorific value of the E15 fuel decreased the speed of the engine along with reduction in the fuel consumption and exhaust gas temperature. The HC emissions for E15 fuel and E3 spark plug increased when compared to the base line in most of the cases and NO formation was dependent on the cylinder head temperature. The E3 spark plug had a tendency to increase the temperature of the cylinder head irrespective of fuel type while reducing engine speed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fast-growing power demand by portable electronic devices has promoted the increase of global production of portable PEM fuel cell, a quarter of them consist of direct methanol fuel cell (DMFC) units. These present the advantage of being fuelled directly with a liquid fuel, as well as direct ethanol fuel cells (DEFC) do.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Local changes of the interfacial pH can significantly affect the rate and mechanism during the course of an electrodic reaction. For instance, different pH values will have a significant effect on the equilibrium properties of both solution and surface species, altering the reactions kinetics. Ethanol oxidation at platinum electrodes in alkaline media involves the fast consumption of OH− species that will change the local pH at the electrode surface, decreasing the reaction rate. In this study, the local pH change during ethanol oxidation in alkaline media is accomplished by using rotating ring-disc electrode (RRDE) experiments. The current at the ring when polarized at the onset of hydrogen evolution serves as a measure of the local pH in the vicinity of the electrode. The results show that the current at the ring at 0.1 V (vs. RHE) becomes more negative during ethanol oxidation, owing to a change in the equilibrium potential of the hydrogen evolution reaction caused by a change in the local pH.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reuse of record except for individual research requires license from Congressional Information Service, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different compositions of Pt, PtNi, PtSn, and PtSnNi electrocatalysts supported on carbon Vulcan XC-72 were prepared through thermal decomposition of polymeric precursors. The nanoparticles were characterized by morphological and structural analyses (XRD, TEM, and EDX). XRD results revealed a face-centered cubic structure for platinum, and there was evidence that Ni and Sn atoms are incorporated into the Pt structure. The electrochemical investigation was carried out in slightly acidic medium (H(2)SO(4) 0.05 mol L(-1)), in the absence and in the presence of ethanol. Addition of Ni to Pt/C and PtSn/C catalysts significantly shifted the onset of ethanol and CO oxidations toward lower potentials, thus enhancing the catalytic activity, especially in the case of the ternary PtSnNi/C composition. Electrolysis of ethanol solutions at 0.4 V us. RHE allowed for determination of acetaldehyde and acetic acid as the reaction products, as detected by HPLC analysis. Due to the high concentration of ethanol employed in the electrolysis experiments (1.0 mol L(-1)), no formation of CO(2) was observed. Copyright (C) 2010, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last two decades, the use of oxygenated fuels, like methanol and ethanol, pure or in mixture with gasoline, has been growing due to benefits introduced into the air quality. In Brasil, the fraction of light duty vehicles powered by pure hydrated ethanol is estimated at about 4 million, while the remaining vehicles actually utilize a mixture (22:78 v/v) of ethanol:gasoline. As a consequence, there's a need for the availability of methods that can provide the evaluation of possible impacts of alcohol emissions in the formation of chemical species in the atmosphere, as ozone, aldehydes, carboxylic acids and so on. In this paper, methanol and ethanol are discussed in their general aspects, as well as their atmospheric sources, chemical reactivity and available methods of analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method is presented for the choice of spectral regions when absorption measurements are coupled to chemometric tools to perform quantitative analyses. The method is based on the spectral distribution of the relative standard deviation of concentration (s c/c). It has been applied to the development of PLS-FTNIR calibration models for the determination of density and MON of gasoline, and ethanol content and density of ethanol fuel. The new method was also compared with the correlation (R²) method and has proved to generate PLS calibration models that present better accuracy and precision than those based on R².

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work three ferroin reagents were studied for the simultaneous spectrophotometric determination of iron and copper: 1,10-phenanthroline, 2,2'-bipyridine and 2,4,6-tri(2-pyridyl)-1,3,5-triazine. Effect of pH, conditions, order reagent addition, interferences, amount of reagents, lineal range, sensitivity and stability of each system were compared. The 2,4,6-tri(2-pyridyl)-1,3,5-triazine can be used for determination of iron in the presence of copper with a detection limit of 5 µg L-1 and coefficient of variation of 2.0%; However it was not possible to determine directly copper in the presence of iron with this reagent. 1,10-phenanthroline can be used for simultaneous determination of the metallic ions with detection limits of 7 and 8 mg L-1 and coefficients of variation of 1.8 and 2.3% in the determination of iron and copper, respectively. The results showed also that 2,2'-bipyridine can be used for simultaneous determination of the metallic ions with detection limits of 11 and 32 µg L-1 and coefficients of variation of 1.9 and 2.5% in the determination of iron and copper, respectively. The reagents were used for spectrophotometric determination of iron and copper in ethanol fuel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work shows the results of a Proficiency Testing performed by a partnership between INMETRO and ANP. The performance of 49 Brazilian laboratories (using the z-score statistical test) in determining 10 quality parameters of ethanol fuel and biodiesel was evaluated. The certified reference values were provided by INMETRO, allowing a more rigorous assessment of the laboratories. For hydrous ethanol, the acidity parameter showed the lowest number of laboratories with satisfactory results (48%), while 85% of the laboratories presented satisfactory results for ethanol content. For biodiesel, the percentage of laboratories with satisfactory results ranged from 46% (kinematic viscosity) to 92% (acid number).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A sensitive spectrophotometric method was developed for sulphate determination in automotive ethanol fuel. The method based on the reaction of the analyte with barium-dibromosulphonazo(III) complex lead to a decrease in the magnitude of the absorbance signals monitored at 649 nm. No sample pretreatment is required and the proposed method allows sulphate determination in the 0.45 - 6.50 mg L-1 range with R.S.D. < 2% and limit of detection of 0.14 mg L-1. The method has been successfully applied for sulphate determination in automotive ethanol fuel and the results agreed with the reference chromatographic method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The catalytic ethanolysis of soybean oil with commercial immobilized lipase type B from Candida antarctica to yield ethyl esters (biodiesel) has been investigated. Transesterification was monitored with respect to the following parameters: quantity of biocatalyst, reaction time, amount of water added and turnover of lipase. The highest yields of biodiesel (87% by (1)H NMR; 82.9% by GC) were obtained after a reaction time of 24 h at 32 degrees C in the presence of lipase equivalent to 5.0% (w/w) of the amount of soybean oil present. The production of ethyl esters by enzymatic ethanolysis was not influenced by the addition of water up to 4.0% (v/v) of the alcohol indicating that it is possible to use hydrated ethanol in the production of biodiesel catalyzed by lipase. The immobilized enzyme showed high stability under moderate reaction conditions and retained its activity after five production cycles. The (1)H NMR methodology elaborated for the quantification of biodiesel in unpurified reaction mixtures showed good correlations between the signal areas of peaks associated with the alpha-methylene groups of the ethyl esters and those of the triacyl-glycerides in residual soybean oil. Monoacylglycerides, diacylglycerides and triglycerides could also be detected and quantified in the crude biodiesel using (1)H NMR spectroscopic and GC-FID chromatographic methods. The biodiesel production by enzymatic catalysis was promising. In this case, was produced a low concentration of glycerol (0.74%) and easily removed by water extraction. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, global demand for ethanol fuel has expanded very rapidly, and this should further increase in the near future, almost all ethanol fuel is produced by fermentation of sucrose or glucose in Brazil and produced by corn in the USA, but these raw materials will not be enough to satisfy international demand. The aim of this work was studied the ethanol production from cashew apple juice. A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentration (from 24.4 to 103.1 g.L-1). Maximal ethanol, cell and glycerol concentrations (44.4 g.L-1, 17.17 g.L-1, 6.4 g.L-1, respectively) were obtained when 103.1 g.L-1 of initial sugar concentration were used, respectively. Ethanol yield (YP/S) was calculated as 0.49 g (g glucose + fructose)-1. Pretreatment of cashew apple bagasse (CAB) with dilute sulfuric acid was investigated and evaluated some factors such as sulfuric acid concentration, solid concentration and time of pretreatment at 121°C. The maximum glucose yield (162.9 mg/gCAB) was obtained by the hydrolysis with H2SO4 0.6 mol.L-1 at 121°C for 15 min. Hydrolysate, containing 16 ± 2.0 g.L-1 of glucose, was used as fermentation medium for ethanol production by S. cerevisiae and obtained a ethanol concentration of 10.0 g.L-1 after 4 with a yield and productivity of 0.48 g (g glucose)-1 and 1.43 g.L-1.h-1, respectively. The enzymatic hydrolysis of cashew apple bagasse treated with diluted acid (CAB-H) and alkali (CAB-OH) was studied and to evaluate its fermentation to ethanol using S. cerevisiae. Glucose conversion of 82 ± 2 mg per g CAB-H and 730 ± 20 mg per g CAB-OH was obtained when was used 2% (w/v) of solid and loading enzymatic of 30 FPU/g bagasse at 45 °C. Ethanol concentration and productivity was achieved of 20.0 ± 0.2 g.L-1 and 3.33 g.L-1.h-1, respectively when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g.L-1). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g.L-1), ethanol concentration and productivity was 8.2 ± 0.1 g.L-1 and 2.7 g.L-1.h-1, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 g/g glucose and 0.47 g/g glucose, with pretreated CABOH and CAB-H, respectively. The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated too in this work. First, the yeast CE025 was preliminary cultivated in a synthetic medium containing glucose and xylose. Results showed that it was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pre-treatment. The fermentation of CABH was conducted at pH 4.5 in a batch-reactor, and only ethanol was produced by K. marxianus CE025. The influence of the temperature in the kinetic parameters was evaluated and best results of ethanol production (12.36 ± 0.06 g.L-1) was achieved at 30 ºC, which is also the optimum temperature for the formation of biomass and the ethanol with a volumetric production rate of 0.25 ± 0.01 g.L-1.h-1 and an ethanol yield of 0.42 ± 0.01 g/g glucose. The results of this study point out the potential of the cashew apple bagasse hydrolysate as a new source of sugars to produce ethanol by S. cerevisiae and K. marxianus CE025. With these results, conclude that the use of cashew apple juice and cashew apple bagasse as substrate for ethanol production will bring economic benefits to the process, because it is a low cost substrate and also solve a disposal problem, adding value to the chain and cashew nut production