847 resultados para Humanistic Science Education
Resumo:
Computer Science is a subject which has difficulty in marketing itself. Further, pinning down a standard curriculum is difficult-there are many preferences which are hard to accommodate. This paper argues the case that part of the problem is the fact that, unlike more established disciplines, the subject does not clearly distinguish the study of principles from the study of artifacts. This point was raised in Curriculum 2001 discussions, and debate needs to start in good time for the next curriculum standard. This paper provides a starting point for debate, by outlining a process by which principles and artifacts may be separated, and presents a sample curriculum to illustrate the possibilities. This sample curriculum has some positive points, though these positive points are incidental to the need to start debating the issue. Other models, with a less rigorous ordering of principles before artifacts, would still gain from making it clearer whether a specific concept was fundamental, or a property of a specific technology. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper examines the use of on-line discussion as a medium for learning in a pre-service teacher education program. As part of an Education Studies course student teachers engaged in a discussion of issues related to technology and equity in schools. The design of the task and the subsequent analysis of the on-line text were part of a research project investigating whether and how communications technology can be used to integrate and extend the learning of teacher education students. The main argument developed in the paper is that through the on-line activity distinctive sets of writing practices were created. These practices enabled students to make connections between the often disparate parts of teacher education programs-theory and practice, campus and school, research and experience. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Over the past decade, scientists have been called to participate more actively in public education and outreach (E&O). This is particularly true in fields of significant societal impact, such as earthquake science. Local earthquake risk culture plays a role in the way that the public engages in educational efforts. In this article, we describe an adapted E&O program for earthquake science and risk. The program is tailored for a region of slow tectonic deformation, where large earthquakes are extreme events that occur with long return periods. The adapted program has two main goals: (1) to increase the awareness and preparedness of the population to earthquake and related risks (tsunami, liquefaction, fires, etc.), and (2) to increase the quality of earthquake science education, so as to attract talented students to geosciences. Our integrated program relies on activities tuned for different population groups who have different interests and abilities, namely young children, teenagers, young adults, and professionals.
Resumo:
This paper presents the main ideas discussed in the round-table "Social and Educacional Aspects of Schistosomiasis Control", during the VII International Symposium of Schistosomiais. Considering the perspectives of schistosomiasis control in Brazil, it is described the example of the State of Minas Gerais , where the disease has been registered for more than seven decades. The importance of an extensive evaluation is now more important, considering the recent change in the Brazilian health system, since the Federal responsibility for the tropical diseases control programs have been replaced by the municipalities coordination. In this way, it is urgent to develop effective alternatives to assist the municipal staffs in the control task. In the specific case of health education, one observes a wide gap between the planned objectives and what is in fact carried out. Instant objectives and the utilization of traditional techniques prevail, which do not take into account the active participation of the population involved. Based on the authors' experience in the scientific and health education, the paper analyzes: (1) some data from a case study in the metropolitan region of Belo Horizonte, which presents the social representation and perception of schistosomiasis by the population; (2) an analysis of 35 different informative and educative materials used in Brazil since the sixties, and (3) some recommendations resulted from the studies that were carried out.
Resumo:
Statistics occupies a prominent role in science and citizens' daily life. This article provides a state-of-the-art of the problems associated with statistics in science and in society, structured along the three paradigms defined by Bauer, Allum and Miller (2007). It explores in more detail medicine and public understanding of science on the one hand, and risks and surveys on the other. Statistics has received a good deal of attention; however, very often handled in terms of deficit - either of scientists or of citizens. Many tools have been proposed to improve statistical literacy, the image of and trust in statistics, but with little understanding of their roots, with little coordination among stakeholders and with few assessments of impacts. These deficiencies represent as many new and promising directions in which the PUS research agenda could be expanded.
Resumo:
Heretofore the issue of quality in forensic science is approached through a quality management policy whose tenets are ruled by market forces. Despite some obvious advantages of standardization of methods allowing interlaboratory comparisons and implementation of databases, this approach suffers from a serious lack of consideration for forensic science as a science. A critical study of its principles and foundations, which constitutes its culture, enables to consider the matter of scientific quality through a new dimension. A better understanding of what pertains to forensic science ensures a better application and improves elementary actions within the investigative and intelligence processes as well as the judicial process. This leads to focus the attention on the core of the subject matter: the physical remnants of the criminal activity, namely, the traces that produce information in understanding this activity. Adapting practices to the detection and recognition of relevant traces relies on the apprehension of the processes underlying forensic science tenets (Locard, Kirk, relevancy issue) and a structured management of circumstantial information (directindirect information). This is influenced by forensic science education and training. However, the lack of homogeneity with regard to the scientific nature and culture of the discipline within forensic science practitioners and partners represents a real challenge. A sound and critical reconsideration of the forensic science practitioner's roles (investigator, evaluator, intelligence provider) and objectives (prevention, strategies, evidence provider) within the criminal justice system is a means to strengthen the understanding and the application of forensic science. Indeed, the whole philosophy is aimed at ensuring a high degree of excellence, namely, a dedicated scientific quality.
Resumo:
The thoughts of the philosopher Paul Karl Feyerabend brought important contributions to the debate on Science in the 20th century. Most recently his views about non-existence of a single method for doing science have been employed to rethink science education and propose the use of multiple methods for effective teaching-learning process. This article employs the theoretical framework of the author expressed in the book Against Method, 1977, about the epistemological anarchism and the methodological pluralism and uses it in the contemporary discussion of medical education.
Resumo:
The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.
Resumo:
In the last decade, dialogue between science and society has found a forum in an increasing number of publications on topics such as public engagement with science and public trust in science. Concerning the latter, issues that include cases of research misconduct, accountability in research, and conflicts of interest (COIs) have shaped global discussions on the communication of science. In the publication setting, the perception that hiding COIs and/or not managing them well may affect public trust in the research record has grown among editors. We conducted a search for editorials addressing COIs between 1989 and 2011, using four major databases: Medline/PubMed, Embase, Scopus, and Web of Knowledge. We explored the content of these editorials and the relationship they established between COIs and the public trust in science. Our results demonstrate that the relationship between disclosure of COIs and public trust in science has become a major concern among editors. We, thus, argue that COIs should be discussed more openly and frequently in graduate courses in the sciences, around the globe, not only in biomedical but also in non-biomedical areas. This is a critical issue in contemporary science, as graduate students are the future voices and decision-makers of the research community. Therefore, COIs, especially in the broader context of science and society, merit closer attention from policymakers, researchers, and educators. At times of great expectations for public engagement with science, mishandling of COIs may have undesirable consequences for public engagement with science and confidence in the scientific endeavor.
Resumo:
A sample of 1,345 students enrolled in advanced-level science courses from Grades 9 through OAe was surveyed in order to gain perspective into the existence of motivational differences attributing to science course enrolment by gender. Records of enrolment were examined in order to detect patterns and trends. A questionnaire was devised and piloted. It measured five motivational variables - demographics, science and science-related experiences, science ability and attitudes, impressions about women in science, and importance of science and science-related skills. The students also provided some impressions about the image of scientists. Results of the questionnaire were analyzed for frequency of responses and for significant gender differences using the chi-square. Differences were found to exist in the areas of science anxiety as it relates to testing and oral participation; in motivation generated by the performance of extra-curricular science and science-related activities, and by the classroom environment; in impressions of women in science; in the importance of science skills, and in the area of teacher influence. The study also showed a differential enrolment of females, with an emphasis on biology and chemistry. The males were enrolled in courses of physics and chemistry. The findings lead to numerous suggested strategies and programs for encouraging the participation of females in science education and careers.
Resumo:
Youth violence is El Salvador’s most imperative social, economic and health problem today. In an attempt to contribute to youth violence prevention in the country, humanistic physical education has been implemented within schools. Using case study methodology, this study examines twelve Salvadoran school directors’ perspectives of physical education and physical education as a mean of youth violence prevention. School directors’ perceive multiple benefits of physical education including those related to student’s social and emotional health. School directors recognize physical education as a means of reducing violence because it keeps youth busy and provides an outlet to release stress. Results are discussed in relation to long-term violence prevention literature. Results suggest that it would be beneficial for school directors to understand the theory and goals behind humanistic physical education in their schools. Research maintains the continuation of research in the field of humanistic physical education in relation to youth violence prevention.