929 resultados para Human skeleton -- Disorders


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present a Bayesian approach to estimate a chromosome and a disorder network from the Online Mendelian Inheritance in Man (OMIM) database. In contrast to other approaches, we obtain statistic rather than deterministic networks enabling a parametric control in the uncertainty of the underlying disorder-disease gene associations contained in the OMIM, on which the networks are based. From a structural investigation of the chromosome network, we identify three chromosome subgroups that reflect architectural differences in chromosome-disorder associations that are predictively exploitable for a functional analysis of diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The existence of a specialized imitation module in humans is hotly debated. Studies suggesting a specific imitation impairment in individuals with autism spectrum disorders (ASD) support a modular view. However, the voluntary imitation tasks used in these studies (which require socio-cognitive abilities in addition to imitation for successful performance) cannot support claims of a specific impairment. Accordingly, an automatic imitation paradigm (a ‘cleaner’ measure of imitative ability) was used to assess the imitative ability of 16 adults with ASD and 16 non-autistic matched control participants. Participants performed a prespecified hand action in response to observed hand actions performed either by a human or a robotic hand. On compatible trials the stimulus and response actions matched, while on incompatible trials the two actions did not match. Replicating previous findings, the Control group showed an automatic imitation effect: responses on compatible trials were faster than those on incompatible trials. This effect was greater when responses were made to human than to robotic actions (‘animacy bias’). The ASD group also showed an automatic imitation effect and a larger animacy bias than the Control group. We discuss these findings with reference to the literature on imitation in ASD and theories of imitation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Considering that little is known about the epidemiology of Neospora caninum infection in humans, particularly in populations with high Toxoplasma gondii infection rates, the present study aimed to investigate the presence of antibodies to N. caninum in T. gondii-seropositive and -seronegative individuals. A total of 256 serum samples divided into four groups (61 samples from human immunodeficiency virus [HIV]-positive patients, 50 samples from patients with neurological disorders, 91 samples from newborns, and 54 samples from healthy subjects) were assessed for N. caninum and T. gondii serologies by indirect fluorescent-antibody test, enzyme-linked immunosorbent assay, and immunoblotting (IB). Immunoglobulin G antibodies to N. caninum were predominantly detected in HIV-infected patients (38%) and patients with neurological disorders (18%), while newborns and healthy subjects showed lower seropositivity rates (5% and 6%, respectively). Seropositivity to N. caninum was significantly associated with seropositivity to T. gondii in both HIV-infected patients and patients with neurological disorders. Seroreactivity to N. caninum was confirmed by IB, with positive sera predominantly recognizing the 29-kDa antigen of N. caninum. The results of this study indicate the presence of N. caninum infection or exposure in humans, particularly in HIV-infected patients or patients with neurological disorders, who could have opportunistic and concurrent infections with T. gondii. These findings may bring a new concern for the unstable clinical health of HIV-infected patients and the actual role of N. caninum infection in immunocompromised patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ventricular cells are immersed in a bath of electrolytes and these ions are essential for a healthy heart and a regular rhythm. Maintaining physiological concentration of them is fundamental for reducing arrhythmias and risk of sudden cardiac death, especially in haemodialysis patients and in the heart diseases treatments. Models of electrically activity of the heart based on mathematical formulation are a part of the efforts to improve the understanding and prediction of heart behaviour. Modern models incorporate the extensive and ever increasing amounts of experimental data in incorporating biophysically detailed mechanisms to allow the detailed study of molecular and subcellular mechanisms of heart disease. The goal of this project was to simulate the effects of changes in potassium and calcium concentrations in the extracellular space between experimental data and and a description incorpored into two modern biophysically detailed models (Grandi et al. Model; O’Hara Rudy Model). Moreover the task was to analyze the changes in the ventricular electrical activity, in particular by studying the modifications on the simulated electrocardiographic signal. We used the cellular information obtained by the heart models in order to build a 1D tissue description. The fibre is composed by 165 cells, it is divided in four groups to differentiate the cell types that compound human ventricular tissue. The main results are the following: Grandi et al. (GBP) model is not even able to reproduce the correct action potential profile in hyperkalemia. Data from hospitalized patients indicates that the action potential duration (APD) should be shorter than physiological state but in this model we have the opposite. From the potassium point of view the results obtained by using O’Hara model (ORD) are in agreement with experimental data for the single cell action potential in hypokalemia and hyperkalemia, most of the currents follow the data from literature. In the 1D simulations we were able to reproduce ECGs signal in most the potassium concentrations we selected for this study and we collected data that can help physician in understanding what happens in ventricular cells during electrolyte disorder. However the model fails in the conduction of the stimulus under hyperkalemic conditions. The model emphasized the ECG modifications when the K+ is slightly more than physiological value. In the calcium setting using the ORD model we found an APD shortening in hypocalcaemia and an APD lengthening in hypercalcaemia, i.e. the opposite to experimental observation. This wrong behaviour is kept in one dimensional simulations bringing a longer QT interval in the ECG under higher [Ca2+]o conditions and vice versa. In conclusion it has highlighted that the actual ventricular models present in literature, even if they are useful in the original form, they need an improvement in the sensitivity of these two important electrolytes. We suggest an use of the GBP model with modifications introduced by Carro et al. who understood that the failure of this model is related to the Shannon et al. model (a rabbit model) from which the GBP model was built. The ORD model should be modified in the Ca2+ - dependent IcaL and in the influence of the Iks in the action potential for letting it him produce a correct action potential under different calcium concentrations. In the 1D tissue maybe a heterogeneity setting of intra and extracellular conductances for the different cell types should improve a reproduction of the ECG signal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The domestic dog offers a unique opportunity to explore the genetic basis of disease, morphology and behaviour. Humans share many diseases with our canine companions, making dogs an ideal model organism for comparative disease genetics. Using newly developed resources, genome-wide association studies in dog breeds are proving to be exceptionally powerful. Towards this aim, veterinarians and geneticists from 12 European countries are collaborating to collect and analyse the DNA from large cohorts of dogs suffering from a range of carefully defined diseases of relevance to human health. This project, named LUPA, has already delivered considerable results. The consortium has collaborated to develop a new high density single nucleotide polymorphism (SNP) array. Mutations for four monogenic diseases have been identified and the information has been utilised to find mutations in human patients. Several complex diseases have been mapped and fine mapping is underway. These findings should ultimately lead to a better understanding of the molecular mechanisms underlying complex diseases in both humans and their best friend.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present review, we deliver an overview of the involvement of metabotropic glutamate receptor 5 (mGluR5) activity and density in pathological anxiety, mood disorders and addiction. Specifically, we will describe mGluR5 studies in humans that employed Positron Emission Tomography (PET) and combined the findings with preclinical animal research. This combined view of different methodological approaches-from basic neurobiological approaches to human studies-might give a more comprehensive and clinically relevant view of mGluR5 function in mental health than the view on preclinical data alone. We will also review the current research data on mGluR5 along the Research Domain Criteria (RDoC). Firstly, we found evidence of abnormal glutamate activity related to the positive and negative valence systems, which would suggest that antagonistic mGluR5 intervention has prominent anti-addictive, anti-depressive and anxiolytic effects. Secondly, there is evidence that mGluR5 plays an important role in systems for social functioning and the response to social stress. Finally, mGluR5's important role in sleep homeostasis suggests that this glutamate receptor may play an important role in RDoC's arousal and modulatory systems domain. Glutamate was previously mostly investigated in non-human studies, however initial human clinical PET research now also supports the hypothesis that, by mediating brain excitability, neuroplasticity and social cognition, abnormal metabotropic glutamate activity might predispose individuals to a broad range of psychiatric problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human neurodegenerative diseases, such as Parkinson’s disease (PD) and the neuromuscular disorders called dystroglycanopathies (DGPs), cause retinal impairments. We have used RNA-Seq technology to catalog all known genes linked to PD and DGPs expressed in the human retina and quantitate their mRNA levels in terms of FPKM. We have also characterized their expression profiles in the retina by determining their exonic, intronic and exon-intron junction expression levels, as well as the alternative splicing pattern of particular genes. We believe these data could pave the way toward understanding the molecular bases of sight deficiencies associated with neurodegenerative disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bibliography: p. 369-398.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For the immune system to function effectively, the body must be able to distinguish foreign antigens from self-antigens. However, the mechanisms which maintain this distinction may break down and result in auto-immune disease in which self-reacting antibodies and T-cells are produced. This article discusses first, the evidence for the existence of human auto-immune disease and second, the auto-immune diseases which have characteristic ocular symptoms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

HIV-associated neurocognitive disorders (HAND) is characterized by development of cognitive, behavioral and motor abnormalities, and occur in approximately 50% of HIV infected individuals. Our current understanding of HAND emanates mainly from HIV-1 subtype B (clade B), which is prevalent in USA and Western countries. However very little information is available on neuropathogenesis of HIV-1 subtype C (clade C) that exists in Sub-Saharan Africa and Asia. Therefore, studies to identify specific neuropathogenic mechanisms associated with HAND are worth pursuing to dissect the mechanisms underlying this modulation and to prevent HAND particularly in clade B infection. In this study, we have investigated 84 key human synaptic plasticity genes differential expression profile in clade B and clade C infected primary human astrocytes by using RT2 Profile PCR Array human Synaptic Plasticity kit. Among these, 31 and 21 synaptic genes were significantly (≥3 fold) down-regulated and 5 genes were significantly (≥3 fold) up-regulated in clade B and clade C infected cells, respectively compared to the uninfected control astrocytes. In flow-cytometry analysis, down-regulation of postsynaptic density and dendrite spine morphology regulatory proteins (ARC, NMDAR1 and GRM1) was confirmed in both clade B and C infected primary human astrocytes and SK-N-MC neuroblastoma cells. Further, spine density and dendrite morphology changes by confocal microscopic analysis indicates significantly decreased spine density, loss of spines and decreased dendrite diameter, total dendrite and spine area in clade B infected SK-N-MC neuroblastoma cells compared to uninfected and clade C infected cells. We have also observed that, in clade B infected astrocytes, induction of apoptosis was significantly higher than in the clade C infected astrocytes. In conclusion, this study suggests that down-regulation of synaptic plasticity genes, decreased dendritic spine density and induction of apoptosis in astrocytes may contribute to the severe neuropathogenesis in clade B infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is concerned with the genetic basis of normal human pigmentation variation. Specifically, the role of polymorphisms within the solute carrier family 45 member 2 (SLC45A2 or membrane associated transporter protein; MATP) gene were investigated with respect to variation in hair, skin and eye colour ― both between and within populations. SLC45A2 is an important regulator of melanin production and mutations in the gene underly the most recently identified form of oculocutaneous albinism. There is evidence to suggest that non-synonymous polymorphisms in SLC45A2 are associated with normal pigmentation variation between populations. Therefore, the underlying hypothesis of this thesis is that polymorphisms in SLC45A2 will alter the function or regulation of the protein, thereby altering the important role it plays in melanogenesis and providing a mechanism for normal pigmentation variation. In order to investigate the role that SLC45A2 polymorphisms play in human pigmentation variation, a DNA database was established which collected pigmentation phenotypic information and blood samples of more than 700 individuals. This database was used as the foundation for two association studies outlined in this thesis, the first of which involved genotyping two previously-described non-synonymous polymorphisms, p.Glu272Lys and p.Phe374Leu, in four different population groups. For both polymorphisms, allele frequencies were significantly different between population groups and the 272Lys and 374Leu alleles were strongly associated with black hair, brown eyes and olive skin colour in Caucasians. This was the first report to show that SLC45A2 polymorphisms were associated with normal human intra-population pigmentation variation. The second association study involved genotyping several SLC45A2 promoter polymorphisms to determine if they also played a role in pigmentation variation. Firstly, the transcription start site (TSS), and hence putative proximal promoter region, was identified using 5' RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE). Two alternate TSSs were identified and the putative promoter region was screened for novel polymorphisms using denaturing high performance liquid chromatography (dHPLC). A novel duplication (c.–1176_–1174dupAAT) was identified along with other previously described single nucleotide polymorphisms (c.–1721C>G and c.–1169G>A). Strong linkage disequilibrium ensured that all three polymorphisms were associated with skin colour such that the –1721G, +dup and –1169A alleles were associated with olive skin in Caucasians. No linkage disequilibrium was observed between the promoter and coding region polymorphisms, suggesting independent effects. The association analyses were complemented with functional data, showing that the –1721G, +dup and –1169A alleles significantly decreased SLC45A2 transcriptional activity. Based on in silico bioinformatic analysis that showed these alleles remove a microphthalmia-associated transcription factor (MITF) binding site, and that MITF is a known regulator of SLC45A2 (Baxter and Pavan, 2002; Du and Fisher, 2002), it was postulated that SLC45A2 promoter polymorphisms could contribute to the regulation of pigmentation by altering MITF binding affinity. Further characterisation of the SLC45A2 promoter was carried out using luciferase reporter assays to determine the transcriptional activity of different regions of the promoter. Five constructs were designed of increasing length and their promoter activity evaluated. Constitutive promoter activity was observed within the first ~200 bp and promoter activity increased as the construct size increased. The functional impact of the –1721G, +dup and –1169A alleles, which removed a MITF consensus binding site, were assessed using electrophoretic mobility shift assays (EMSA) and expression analysis of genotyped melanoblast and melanocyte cell lines. EMSA results confirmed that the promoter polymorphisms affected DNA-protein binding. Interestingly, however, the protein/s involved were not MITF, or at least MITF was not the protein directly binding to the DNA. In an effort to more thoroughly characterise the functional consequences of SLC45A2 promoter polymorphisms, the mRNA expression levels of SLC45A2 and MITF were determined in melanocyte/melanoblast cell lines. Based on SLC45A2’s role in processing and trafficking TYRP1 from the trans-Golgi network to stage 2 melanosmes, the mRNA expression of TYRP1 was also investigated. Expression results suggested a coordinated expression of pigmentation genes. This thesis has substantially contributed to the field of pigmentation by showing that SLC45A2 polymorphisms not only show allele frequency differences between population groups, but also contribute to normal pigmentation variation within a Caucasian population. In addition, promoter polymorphisms have been shown to have functional consequences for SLC45A2 transcription and the expression of other pigmentation genes. Combined, the data presented in this work supports the notion that SLC45A2 is an important contributor to normal pigmentation variation and should be the target of further research to elucidate its role in determining pigmentation phenotypes. Understanding SLC45A2’s function may lead to the development of therapeutic interventions for oculocutaneous albinism and other disorders of pigmentation. It may also help in our understanding of skin cancer susceptibility and evolutionary adaptation to different UV environments, and contribute to the forensic application of pigmentation phenotype prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Mood and anxiety disorders pose significant health burdens on the community. Kava and St John’s wort (SJW) are the most commonly used herbal medicines in the treatment of anxiety and depressive disorders, respectively. Objectives: To conduct a comprehensive review of kava and SJW, to review any evidence of efficacy, mode of action, pharmacokinetics, safety and use in Major Depressive Disorder (MDD), Bipolar Disorder (BP), Seasonal Affective Disorder (SAD), Generalized Anxiety Disorder (GAD), Social Phobia (SP), Panic Disorder (PD), Obsessive-Compulsive Disorder (OCD), and Post Traumatic Stress Disorder (PTSD). Methods: A systematic review was conducted using the electronic databases MEDLINE, CINAHL, and The Cochrane Library during late 2008. The search criteria involved mood and anxiety disorder search terms in combination with kava, Piper methysticum, kavalactones, St John’s wort, Hypericum perforatum, hypericin and hyperforin. Additional search criteria for safety, pharmacodynamics , and pharmacokinetics was employed. A subsequent forward search was conducted of the papers using Web of Science cited reference search. Results: Current evidence supports the use of SJW in treating mild-moderate depression, and for kava in treatment of generalized anxiety. In respect to the other disorders, only weak preliminary evidence exists for use of SJW in SAD. Currently there is no published human trial on use of kava in affective disorders, or in OCD, PTSD, PD or SP. These disorders constitute potential applications that warrant exploration. Conclusions: Current evidence for herbal medicines in the treatment of depression and anxiety only supports the use of Hypericum perforatum for depression, and Piper methysticum for generalized anxiety.