901 resultados para Human identification
Resumo:
Entre as muitas aplicações das tecnologias de identificação biológica humana, estão as finalidades forenses. O objetivo desta pesquisa foi verificar frequências alélicas de Short Tandem Repeat (STR) e os parâmetros estatísticos de interesse em genética de populações e forense para desenvolver o primeiro banco de dados populacional de DNA na Faculdade de Odontologia de Bauru, Universidade de São Paulo, (FOB/USP) para futuros usos forenses. Frequências alélicas de 15 locos autossômicos e do marcador de gênero amelogenina foram determinadas utilizando amostras de 200 μL de saliva doados por 296 alunos de graduação da FOB/USP, com idade ≥ 18 anos, após aprovação ética. Os testes laboratoriais foram feitos com kits comerciais. Resultados e parâmetros estatísticos foram obtidos por meio de programas clássicos: GeneMapper-ID-X, MS Excel 2002 versão 10.6871.6870, GenAlEx 6.5 e Arlequin 3.5, comparando quatro populações (brasileira, portuguesa, norte-americana e a população deste estudo). Os locos mais polimórficos foram D18S51 (17 alelos) e FGA (15 alelos), seguidos pelo D21S11 (13 alelos) e os menos polimórficos foram D16S539 e TH01 (7 alelos cada). A análise comparativa com amostra da população brasileira proveniente de estudos anteriores (n > 100.000) pelo teste goodness of fit X2 index não mostrou diferenças significativas entre estes grupos (p = 0,9999). Outros parâmetros estatísticos foram calculados comparando as populações: local (deste estudo), portuguesa e norte-americana. A análise de variância molecular (AMOVA) entre as três populações, entre as pessoas da mesma população e para cada pessoa de cada população mostrou que existe uma elevada variância individual (99%), que esta variância é mantida uniformemente entre as pessoas da mesma amostra/região (1%) e entre as três populações estudadas (0%). O estudo confirmou o elevado grau de polimorfismo e a alta heterozigosidade (96,5%) da população. Houve diferença significativa quanto ao gênero (79,7% mulheres) quando comparado à população brasileira em geral (50,4%), explicada pelas características do corpo discente da FOB/USP composto por 80,6% de pessoas do gênero feminino. Interessante foi a observação de uma microvariante alélica no loco D18S51, fora da escada padrão e da escala de abrangência do kit, correspondente ao alelo 29, ainda não definida na base de dados internacional (STRBase, atualizada em 07/08/2015). Esta microvariante deverá ser confirmada por testes familiares e sequenciamento de DNA para verificar a possibilidade de outra ocorrência familiar ou duplicação de nucleotídeos. No futuro, os dados obtidos neste estudo devem ser incorporados ao banco de dados da população brasileira e podem ser considerados como referência genética da população regional, ajudando a elucidar casos forenses. Após a confirmação, a potencial nova microvariante alélica contribuirá para a base de dados internacional STRBase.
Resumo:
This dissertation develops an image processing framework with unique feature extraction and similarity measurements for human face recognition in the thermal mid-wave infrared portion of the electromagnetic spectrum. The goals of this research is to design specialized algorithms that would extract facial vasculature information, create a thermal facial signature and identify the individual. The objective is to use such findings in support of a biometrics system for human identification with a high degree of accuracy and a high degree of reliability. This last assertion is due to the minimal to no risk for potential alteration of the intrinsic physiological characteristics seen through thermal infrared imaging. The proposed thermal facial signature recognition is fully integrated and consolidates the main and critical steps of feature extraction, registration, matching through similarity measures, and validation through testing our algorithm on a database, referred to as C-X1, provided by the Computer Vision Research Laboratory at the University of Notre Dame. Feature extraction was accomplished by first registering the infrared images to a reference image using the functional MRI of the Brain’s (FMRIB’s) Linear Image Registration Tool (FLIRT) modified to suit thermal infrared images. This was followed by segmentation of the facial region using an advanced localized contouring algorithm applied on anisotropically diffused thermal images. Thermal feature extraction from facial images was attained by performing morphological operations such as opening and top-hat segmentation to yield thermal signatures for each subject. Four thermal images taken over a period of six months were used to generate thermal signatures and a thermal template for each subject, the thermal template contains only the most prevalent and consistent features. Finally a similarity measure technique was used to match signatures to templates and the Principal Component Analysis (PCA) was used to validate the results of the matching process. Thirteen subjects were used for testing the developed technique on an in-house thermal imaging system. The matching using an Euclidean-based similarity measure showed 88% accuracy in the case of skeletonized signatures and templates, we obtained 90% accuracy for anisotropically diffused signatures and templates. We also employed the Manhattan-based similarity measure and obtained an accuracy of 90.39% for skeletonized and diffused templates and signatures. It was found that an average 18.9% improvement in the similarity measure was obtained when using diffused templates. The Euclidean- and Manhattan-based similarity measure was also applied to skeletonized signatures and templates of 25 subjects in the C-X1 database. The highly accurate results obtained in the matching process along with the generalized design process clearly demonstrate the ability of the thermal infrared system to be used on other thermal imaging based systems and related databases. A novel user-initialization registration of thermal facial images has been successfully implemented. Furthermore, the novel approach at developing a thermal signature template using four images taken at various times ensured that unforeseen changes in the vasculature did not affect the biometric matching process as it relied on consistent thermal features.
Resumo:
Com o presente trabalho pretende-se discutir a importância do DNA na resolução de casos de investigação forense. O Homem, desde os tempos mais remotos tem revelado interesse na confirmação da identidade dos seus semelhantes, pelo desenvolvimento e prática de diversas técnicas de identificação. A partir de uma revisão da literatura, fez-se o estudo dos métodos de identificação humana, sendo este mais aprofundado no que diz respeito ao DNA. Frequentemente são encontrados corpos em que a única peça disponível para o processo de identificação é o dente. As peças dentárias são as estruturas mais resistentes e estáveis do corpo humano, mantendo as suas características e propriedades por longos períodos de tempo pós-morte. A análise do DNA contribui de forma muito importante para os processos de reconhecimento humano, principalmente em casos em que outros métodos de identificação falham devido a decomposição, fragmentação, incineração ou inexistência de dados comparativos ante-morte. Para a obtenção de um perfil genético é necessário executar as seguintes etapas: extração do DNA, sua quantificação e amplificação seguida de análise de determinadas regiões do genoma. Nos dias de hoje, muitos casos de identificação necessitam de uma abordagem multidisciplinar, isto porque em algumas situações existe falta de material padrão ou, por outro lado, pode haver mais do que uma evidência a ser examinada.
Resumo:
A security system based on the recognition of the iris of human eyes using the wavelet transform is presented. The zero-crossings of the wavelet transform are used to extract the unique features obtained from the grey-level profiles of the iris. The recognition process is performed in two stages. The first stage consists of building a one-dimensional representation of the grey-level profiles of the iris, followed by obtaining the wavelet transform zerocrossings of the resulting representation. The second stage is the matching procedure for iris recognition. The proposed approach uses only a few selected intermediate resolution levels for matching, thus making it computationally efficient as well as less sensitive to noise and quantisation errors. A normalisation process is implemented to compensate for size variations due to the possible changes in the camera-to-face distance. The technique has been tested on real images in both noise-free and noisy conditions. The technique is being investigated for real-time implementation, as a stand-alone system, for access control to high-security areas.
Resumo:
Previous studies have shown that the human lens contains glycerophospholipids with ether linkages. These lipids differ from conventional glycerophospholipids in that the sn-1 substituent is attached to the glycerol backbone via an 1-O-alkyl or an 1-O-alk-1'-enyl ether rather than an ester bond. The present investigation employed a combination of collision-induced dissociation (CID) and ozone-induced dissociation (OzID) to unambiguously distinguish such 1-O-alkyl and 1-O-alk-1'-enyl ethers. Using these methodologies the human lens was found to contain several abundant 1-O-alkyl glycerophos-phoethanolamines, including GPEtn(16:0e/9Z-18:1), GPEtn(11Z-18:1e/9Z-18:1), and GPEtn(18:0e/9Z-18:1), as well as a related series of unusual 1-O-alkyl glycerophosphoserines, including GPSer(16:0e/9Z-18:1), GPSer(11Z-18:1e/9Z-18:1), GPSer(18:0e/9Z-18:1) that to our knowledge have not previously been observed in human tissue. Isomeric 1-O-alk-1'-enyl ethers were absent or in low abundance. Examination of the double bond position within the phospholipids using OzID revealed that several positional isomers were present, including sites of unsaturation at the n-9, n-7, and even n-5 positions. Tandem CID/OzID experiments revealed a preference for double bonds in the n-7 position of 1-O-ether linked chains, while n-9 double bonds predominated in the ester-linked fatty acids [e.g., GPEtn(11Z-18:1e/9Z-18:1) and GPSer(11Z-18:1e/9Z-18:1)]. Different combinations of these double bond positional isomers within chains at the sn-1 and sn-2 positions point to a remarkable molecular diversity of ether-lipids within the human lens.
Resumo:
Meibum is believed to be the major source of tear film lipids, which are vital in the prevention of excess evaporation of the aqueous phase. The complete lipid composition of meibum has yet to be established. While earlier studies reported the presence of phospholipids in human meibum, recent mass spectrometric studies have not detected them. In this study we use electrospray ionisation tandem mass spectrometry to investigate the presence of phospholipids in meibum and provide comparison to the phospholipid profile of tears.Lipids were extracted from human meibum and tear samples using standard biphasic methods and analysed by nano-electrospray ionisation tandem mass spectrometry using targeted ion scans. A total of 35 choline-containing phospholipids were identified in meibum and the profile of these was similar to that observed in tears, suggesting tear lipids are derived from meibum. The results shown here highlight the need for a combination of optimised techniques to enable the identification of the large range of lipid classes in meibum. © 2011 Elsevier Ltd.
Resumo:
Surface-enhanced Raman spectroscopy (SERS) is a potentially important tool in the rapid and accurate detection of pathogenic bacteria in biological fluids. However, for diagnostic application of this technique, it is necessary to develop a highly sensitive, stable, biocompatible and reproducible SERS-active substrate. In this work, we have developed a silver–gold bimetallic SERS surface by a simple potentiostatic electrodeposition of a thin gold layer on an electrochemically roughened nanoscopic silver substrate. The resultant substrate was very stable under atmospheric conditions and exhibited the strong Raman enhancement with the high reproducibility of the recorded SERS spectra of bacteria (E. coli, S. enterica, S. epidermidis, and B. megaterium). The coating of the antibiotic over the SERS substrate selectively captured bacteria from blood samples and also increased the Raman signal in contrast to the bare surface. Finally, we have utilized the antibiotic-coated hybrid surface to selectively identify different pathogenic bacteria, namely E. coli, S. enterica and S. epidermidis from blood samples.
Resumo:
Automated remote ultrasound detectors allow large amounts of data on bat presence and activity to be collected. Processing of such data involves identifying bat species from their echolocation calls. Automated species identification has the potential to provide more consistent, predictable, and potentially higher levels of accuracy than identification by humans. In contrast, identification by humans permits flexibility and intelligence in identification, as well as the incorporation of features and patterns that may be difficult to quantify. We compared humans with artificial neural networks (ANNs) in their ability to classify short recordings of bat echolocation calls of variable signal to noise ratios; these sequences are typical of those obtained from remote automated recording systems that are often used in large-scale ecological studies. We presented 45 recordings (1–4 calls) produced by known species of bats to ANNs and to 26 human participants with 1 month to 23 years of experience in acoustic identification of bats. Humans correctly classified 86% of recordings to genus and 56% to species; ANNs correctly identified 92% and 62%, respectively. There was no significant difference between the performance of ANNs and that of humans, but ANNs performed better than about 75% of humans. There was little relationship between the experience of the human participants and their classification rate. However, humans with <1 year of experience performed worse than others. Currently, identification of bat echolocation calls by humans is suitable for ecological research, after careful consideration of biases. However, improvements to ANNs and the data that they are trained on may in future increase their performance to beyond those demonstrated by humans.
Resumo:
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10 -16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10 -12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10 -7).
Resumo:
Simultaneous expression of highly homologous RLN1 and RLN2 genes in prostate impairs their accurate delineation. We used PacBio SMRT sequencing and RNA-Seq in LNCaP cells in order to dissect the expression of RLN1 and RLN2 variants. We identified a novel fusion transcript comprising the RLN1 and RLN2 genes and found evidence of its expression in the normal and prostate cancer tissues. The RLN1-RLN2 fusion putatively encodes RLN2 isoform with the deleted secretory signal peptide. The identification of the fusion transcript provided information to determine unique RLN1-RLN2 fusion and RLN1 regions. The RLN1-RLN2 fusion was co-expressed with RLN1 in LNCaP cells, but the two gene products were inversely regulated by androgens. We showed that RLN1 is underrepresented in common PCa cell lines in comparison to normal and PCa tissue. The current study brings a highly relevant update to the relaxin field, and will encourage further studies of RLN1 and RLN2 in PCa and broader.
Resumo:
Addition of estradiol 17-beta to first trimester human placental minces resulted in an increased synthesis of a protein of apparent molecular weight 45 kDa. The specific involvement of estrogen in the stimulation of this protein was established by demonstrating a reduction in the level of this protein by the addition of CCS 16949 A, an inhibitor of aromatase, a key enzyme in the biosynthesis of estradiol 17-beta and ICI 182,780, an estrogen receptor antagonist. The protein was purified to homogeneity and N-terminal sequencing of two of the internal peptides obtained by enzymatic digestion of the protein, as well as the absence of a free N-terminal indicated that it could be actin. This was confirmed by Western blotting using commercially available actin antiserum. The role of estradiol 17-beta in the stimulation of actin synthesis in human placenta was also established by monitoring the quantitative inhibition of DNase I by actin.
Resumo:
The neuronal ceroid lipofuscinoses (NCLs) are a group of mostly autosomal recessively inherited neurodegenerative disorders. The aim of this thesis was to characterize the molecular genetic bases of these, previously genetically undetermined, NCL forms. Congenital NCL is the most aggressive form of NCLs. Previously, a mutation in the cathepsin D (CTSD) gene was shown to cause congenital NCL in sheep. Based on the close resemblance of the phenotypes between congenital NCLs in sheep and human, CTSD was considered as a potential candidate gene in humans as well. When screened for mutations by sequencing, a homozygous nucleotide duplication creating a premature stop codon was identified in CTSD in one family with congenital NCL. While in vitro the overexpressed truncated mutant protein was stable although inactive, the absence of CTSD staining in brain tissue samples of patients indicated degradation of the mutant CTSD in vivo. A lack of CTSD staining was detected also in another, unrelated family with congenital NCL. These results imply that CTSD deficiency underlies congenital NCL. While initially Turkish vLINCL was considered a distinct genetic entity (CLN7), mutations in the CLN8 gene were later reported to account for the disease in a subset of Turkish patients with vLINCL. To further dissect the genetic basis of the disease, all known NCL genes were screened for homozygosity by haplotype analysis of microsatellite markers and/or sequenced in 13 mainly consanguineous, Turkish vLINCL families. Two novel, family-specific homozygous mutations were identified in the CLN6 gene. In the remaining families, all known NCL loci were excluded. To identify novel gene(s) underlying vLINCL, a genomewide single nucleotide polymorphism scan, homozygosity mapping, and positional candidate gene sequencing were performed in ten of these families. On chromosome 4q28.1-q28.2, a novel major facilitator superfamily domain containing 8 (MFSD8) gene with six family-specific homozygous mutations in vLINCL patients was identified. MFSD8 transcript was shown to be ubiquitously expressed with a complex pattern of alternative splicing. Our results suggest that MFSD8 is a novel lysosomal integral membrane protein which, as a member of the major facilitator superfamily, is predicted to function as a transporter. Identification of MFSD8 emphasizes the genetic heterogeneity of Turkish vLINCL. In families where no MFSD8 mutations were detected, additional NCL-causing genes remain to be identified. The identification of CTSD and MFSD8 increases the number of known human NCL-causing genes to eight, and is an important step towards the complete understanding of the genetic spectrum underlying NCLs. In addition, it is a starting point for dissecting the molecular mechanisms behind the associated NCLs and contributes to the challenging task of understanding the molecular pathology underlying the group of NCL disorders.