852 resultados para Human Machine Interaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of human-structure interaction on the dynamic performance of occupied structures have long been observed. The inclusion of the effects of human-structure interaction is important to ensure that the dynamic response of a structure is not overestimated. Previous observations, both in service and in the laboratory, have yielded results indicating that the effects are dependent on the natural frequency of the structure, the posture of the occupants, and the mass ratio of the occupants to the structure. These results are noteworthy, but are limited in their application,because the data are sparse and are only pertinent to a specific set of characteristics identified in a given study. To examine these characteristics simultaneously and consistently, an experimental test structure was designed with variable properties to replicate a variety of configurations within a controlled setting focusing on the effects of passive occupants. Experimental modal analysis techniques were employed to both the empty and occupied conditions of the structure and the dynamic properties associated with each condition were compared. Results similar to previous investigations were observed, including both an increase and a decrease in natural frequency of the occupied structure with respect to the empty structure, as well as the identification of a second mode of vibration. The damping of the combined system was higher for all configurations. Overall, this study provides a broad data set representing a wide array of configurations. The experimental results of this study were used to assess current recommendations for the dynamic properties of a crowd to analytically predict the effects of human-structure interaction. The experimental results were used to select a set of properties for passive, standing occupants and develop a new model that can more accurately represent the behavior of the human-structure system as experimentally measured in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-throughput assays, such as yeast two-hybrid system, have generated a huge amount of protein-protein interaction (PPI) data in the past decade. This tremendously increases the need for developing reliable methods to systematically and automatically suggest protein functions and relationships between them. With the available PPI data, it is now possible to study the functions and relationships in the context of a large-scale network. To data, several network-based schemes have been provided to effectively annotate protein functions on a large scale. However, due to those inherent noises in high-throughput data generation, new methods and algorithms should be developed to increase the reliability of functional annotations. Previous work in a yeast PPI network (Samanta and Liang, 2003) has shown that the local connection topology, particularly for two proteins sharing an unusually large number of neighbors, can predict functional associations between proteins, and hence suggest their functions. One advantage of the work is that their algorithm is not sensitive to noises (false positives) in high-throughput PPI data. In this study, we improved their prediction scheme by developing a new algorithm and new methods which we applied on a human PPI network to make a genome-wide functional inference. We used the new algorithm to measure and reduce the influence of hub proteins on detecting functionally associated proteins. We used the annotations of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) as independent and unbiased benchmarks to evaluate our algorithms and methods within the human PPI network. We showed that, compared with the previous work from Samanta and Liang, our algorithm and methods developed in this study improved the overall quality of functional inferences for human proteins. By applying the algorithms to the human PPI network, we obtained 4,233 significant functional associations among 1,754 proteins. Further comparisons of their KEGG and GO annotations allowed us to assign 466 KEGG pathway annotations to 274 proteins and 123 GO annotations to 114 proteins with estimated false discovery rates of <21% for KEGG and <30% for GO. We clustered 1,729 proteins by their functional associations and made pathway analysis to identify several subclusters that are highly enriched in certain signaling pathways. Particularly, we performed a detailed analysis on a subcluster enriched in the transforming growth factor β signaling pathway (P<10-50) which is important in cell proliferation and tumorigenesis. Analysis of another four subclusters also suggested potential new players in six signaling pathways worthy of further experimental investigations. Our study gives clear insight into the common neighbor-based prediction scheme and provides a reliable method for large-scale functional annotations in this post-genomic era.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staff

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing interest in the intersection of human-computer interaction and public policy. This day-long workshop will examine successes and challenges related to public policy and human computer interaction, in order to provide a forum to create a baseline of examples and to start the process of writing a white paper on the topic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Independientemente de la existencia de técnicas altamente sofisticadas y capacidades de cómputo cada vez más elevadas, los problemas asociados a los robots que interactúan con entornos no estructurados siguen siendo un desafío abierto en robótica. A pesar de los grandes avances de los sistemas robóticos autónomos, hay algunas situaciones en las que una persona en el bucle sigue siendo necesaria. Ejemplos de esto son, tareas en entornos de fusión nuclear, misiones espaciales, operaciones submarinas y cirugía robótica. Esta necesidad se debe a que las tecnologías actuales no pueden realizar de forma fiable y autónoma cualquier tipo de tarea. Esta tesis presenta métodos para la teleoperación de robots abarcando distintos niveles de abstracción que van desde el control supervisado, en el que un operador da instrucciones de alto nivel en la forma de acciones, hasta el control bilateral, donde los comandos toman la forma de señales de control de bajo nivel. En primer lugar, se presenta un enfoque para llevar a cabo la teleoperación supervisada de robots humanoides. El objetivo es controlar robots terrestres capaces de ejecutar tareas complejas en entornos de búsqueda y rescate utilizando enlaces de comunicación limitados. Esta propuesta incorpora comportamientos autónomos que el operador puede utilizar para realizar tareas de navegación y manipulación mientras se permite cubrir grandes áreas de entornos remotos diseñados para el acceso de personas. Los resultados experimentales demuestran la eficacia de los métodos propuestos. En segundo lugar, se investiga el uso de dispositivos rentables para telemanipulación guiada. Se presenta una aplicación que involucra un robot humanoide bimanual y un traje de captura de movimiento basado en sensores inerciales. En esta aplicación, se estudian las capacidades de adaptación introducidas por el factor humano y cómo estas pueden compensar la falta de sistemas robóticos de alta precisión. Este trabajo es el resultado de una colaboración entre investigadores del Biorobotics Laboratory de la Universidad de Harvard y el Centro de Automática y Robótica UPM-CSIC. En tercer lugar, se presenta un nuevo controlador háptico que combina velocidad y posición. Este controlador bilateral híbrido hace frente a los problemas relacionados con la teleoperación de un robot esclavo con un gran espacio de trabajo usando un dispositivo háptico pequeño como maestro. Se pueden cubrir amplias áreas de trabajo al cambiar automáticamente entre los modos de control de velocidad y posición. Este controlador háptico es ideal para sistemas maestro-esclavo con cinemáticas diferentes, donde los comandos se transmiten en el espacio de la tarea del entorno remoto. El método es validado para realizar telemanipulación hábil de objetos con un robot industrial. Por último, se introducen dos contribuciones en el campo de la manipulación robótica. Por un lado, se presenta un nuevo algoritmo de cinemática inversa, llamado método iterativo de desacoplamiento cinemático. Este método se ha desarrollado para resolver el problema cinemático inverso de un tipo de robot de seis grados de libertad donde una solución cerrada no está disponible. La eficacia del método se compara con métodos numéricos convencionales. Además, se ha diseñado una taxonomía robusta de agarres que permite controlar diferentes manos robóticas utilizando una correspondencia, basada en gestos, entre los espacios de trabajo de la mano humana y de la mano robótica. El gesto de la mano humana se identifica mediante la lectura de los movimientos relativos del índice, el pulgar y el dedo medio del usuario durante las primeras etapas del agarre. ABSTRACT Regardless of the availability of highly sophisticated techniques and ever increasing computing capabilities, the problems associated with robots interacting with unstructured environments remains an open challenge. Despite great advances in autonomous robotics, there are some situations where a humanin- the-loop is still required, such as, nuclear, space, subsea and robotic surgery operations. This is because the current technologies cannot reliably perform all kinds of task autonomously. This thesis presents methods for robot teleoperation strategies at different levels of abstraction ranging from supervisory control, where the operator gives high-level task actions, to bilateral teleoperation, where the commands take the form of low-level control inputs. These strategies contribute to improve the current human-robot interfaces specially in the case of slave robots deployed at large workspaces. First, an approach to perform supervisory teleoperation of humanoid robots is presented. The goal is to control ground robots capable of executing complex tasks in disaster relief environments under constrained communication links. This proposal incorporates autonomous behaviors that the operator can use to perform navigation and manipulation tasks which allow covering large human engineered areas of the remote environment. The experimental results demonstrate the efficiency of the proposed methods. Second, the use of cost-effective devices for guided telemanipulation is investigated. A case study involving a bimanual humanoid robot and an Inertial Measurement Unit (IMU) Motion Capture (MoCap) suit is introduced. Herein, it is corroborated how the adaptation capabilities offered by the human-in-the-loop factor can compensate for the lack of high-precision robotic systems. This work is the result of collaboration between researchers from the Harvard Biorobotics Laboratory and the Centre for Automation and Robotics UPM-CSIC. Thirdly, a new haptic rate-position controller is presented. This hybrid bilateral controller copes with the problems related to the teleoperation of a slave robot with large workspace using a small haptic device as master. Large workspaces can be covered by automatically switching between rate and position control modes. This haptic controller is ideal to couple kinematic dissimilar master-slave systems where the commands are transmitted in the task space of the remote environment. The method is validated to perform dexterous telemanipulation of objects with a robotic manipulator. Finally, two contributions for robotic manipulation are introduced. First, a new algorithm, the Iterative Kinematic Decoupling method, is presented. It is a numeric method developed to solve the Inverse Kinematics (IK) problem of a type of six-DoF robotic arms where a close-form solution is not available. The effectiveness of this IK method is compared against conventional numerical methods. Second, a robust grasp mapping has been conceived. It allows to control a wide range of different robotic hands using a gesture based correspondence between the human hand space and the robotic hand space. The human hand gesture is identified by reading the relative movements of the index, thumb and middle fingers of the user during the early stages of grasping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conception of IoT (Internet of Things) is accepted as the future tendency of Internet among academia and industry. It will enable people and things to be connected at anytime and anyplace, with anything and anyone. IoT has been proposed to be applied into many areas such as Healthcare, Transportation,Logistics, and Smart environment etc. However, this thesis emphasizes on the home healthcare area as it is the potential healthcare model to solve many problems such as the limited medical resources, the increasing demands for healthcare from elderly and chronic patients which the traditional model is not capable of. A remarkable change in IoT in semantic oriented vision is that vast sensors or devices are involved which could generate enormous data. Methods to manage the data including acquiring, interpreting, processing and storing data need to be implemented. Apart from this, other abilities that IoT is not capable of are concluded, namely, interoperation, context awareness and security & privacy. Context awareness is an emerging technology to manage and take advantage of context to enable any type of system to provide personalized services. The aim of this thesis is to explore ways to facilitate context awareness in IoT. In order to realize this objective, a preliminary research is carried out in this thesis. The most basic premise to realize context awareness is to collect, model, understand, reason and make use of context. A complete literature review for the existing context modelling and context reasoning techniques is conducted. The conclusion is that the ontology-based context modelling and ontology-based context reasoning are the most promising and efficient techniques to manage context. In order to fuse ontology into IoT, a specific ontology-based context awareness framework is proposed for IoT applications. In general, the framework is composed of eight components which are hardware, UI (User Interface), Context modelling, Context fusion, Context reasoning, Context repository, Security unit and Context dissemination. Moreover, on the basis of TOVE (Toronto Virtual Enterprise), a formal ontology developing methodology is proposed and illustrated which consists of four stages: Specification & Conceptualization, Competency Formulation, Implementation and Validation & Documentation. In addition, a home healthcare scenario is elaborated by listing its well-defined functionalities. Aiming at representing this specific scenario, the proposed ontology developing methodology is applied and the ontology-based model is developed in a free and open-source ontology editor called Protégé. Finally, the accuracy and completeness of the proposed ontology are validated to show that this proposed ontology is able to accurately represent the scenario of interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scientific bases for human-machine communication by voice are in the fields of psychology, linguistics, acoustics, signal processing, computer science, and integrated circuit technology. The purpose of this paper is to highlight the basic scientific and technological issues in human-machine communication by voice and to point out areas of future research opportunity. The discussion is organized around the following major issues in implementing human-machine voice communication systems: (i) hardware/software implementation of the system, (ii) speech synthesis for voice output, (iii) speech recognition and understanding for voice input, and (iv) usability factors related to how humans interact with machines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will require a varying mix of advances in speech technology and in integration of the technology into applications environments. Applications that are described include (1) speech recognition and synthesis for mobile command and control; (2) speech processing for a portable multifunction soldier's computer; (3) speech- and language-based technology for naval combat team tactical training; (4) speech technology for command and control on a carrier flight deck; (5) control of auxiliary systems, and alert and warning generation, in fighter aircraft and helicopters; and (6) voice check-in, report entry, and communication for law enforcement agents or special forces. A phased approach for transfer of the technology into applications is advocated, where integration of applications systems is pursued in parallel with advanced research to meet future needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deployment of systems for human-to-machine communication by voice requires overcoming a variety of obstacles that affect the speech-processing technologies. Problems encountered in the field might include variation in speaking style, acoustic noise, ambiguity of language, or confusion on the part of the speaker. The diversity of these practical problems encountered in the "real world" leads to the perceived gap between laboratory and "real-world" performance. To answer the question "What applications can speech technology support today?" the concept of the "degree of difficulty" of an application is introduced. The degree of difficulty depends not only on the demands placed on the speech recognition and speech synthesis technologies but also on the expectations of the user of the system. Experience has shown that deployment of effective speech communication systems requires an iterative process. This paper discusses general deployment principles, which are illustrated by several examples of human-machine communication systems.