272 resultados para Homing pigeons.
Resumo:
The aim of this study is to assess early homing of placenta-derived stem cells after perinatal intracerebral transplantation in rats.
Resumo:
Homing of human bone marrow-derived mesenchymal stem cells (BMSCs) was studied using ex vivo cultured bovine caudal intervertebral discs (IVDs).
Resumo:
Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease arising from a hematopoietic stem cell expressing the BCR/ABL fusion protein. Leukemic and dendritic cells (DCs) develop from the same transformed hematopoietic progenitors. How BCR/ABL interferes with the immunoregulatory function of DCs in vivo is unknown. We analyzed the function of BCR/ABL-expressing DCs in a retroviral-induced murine CML model using the glycoprotein of lymphocytic choriomeningitis virus as a model leukemia antigen. BCR/ABL-expressing DCs were found in bone marrow, thymus, spleen, lymph nodes, and blood of CML mice. They were characterized by a low maturation status and induced only limited expansion of naive and memory cytotoxic T lymphocytes (CTLs). In addition, immunization with in vitro-generated BCR/ABL-expressing DCs induced lower frequencies of specific CTLs than immunization with control DCs. BCR/ABL-expressing DCs preferentially homed to the thymus, whereas only few BCR/ABL-expressing DCs reached the spleen. Our results indicate that BCR/ABL-expressing DCs do not efficiently induce CML-specific T-cell responses resulting from low DC maturation and impaired homing to secondary lymphoid organs. In addition, BCR/ABL-expressing DCs in the thymus may contribute to CML-specific tolerance induction of specific CTLs.
Resumo:
Janus kinases (JAKs) are central signaling molecules in cytokine receptor cascades. Although they have also been implicated in chemokine receptor signaling, this function continues to be debated. To address this issue, we established a nucleofection model in primary, nonactivated mouse T lymphocytes to silence JAK expression and to evaluate the ability of these cells to home to lymph nodes. Reduced JAK1 and JAK2 expression impaired naïve T-cell migration in response to gradients of the chemokines CXCL12 and CCL21. In vivo homing of JAK1/JAK2-deficient cells to lymph nodes decreased, whereas intranodal localization and motility were unaffected. JAK1 and JAK2 defects altered CXCL12- and CCL21-triggered ezrin/radixin/moesin (ERM) dephosphorylation and F-actin polymerization, as well as activation of lymphocyte function-associated Ag-1 and very late Ag-4 integrins. As a result, the cells did not adhere firmly to integrin substrates in response to these chemokines. The results demonstrate that JAK1/JAK2 participate in chemokine-induced integrin activation and might be considered a target for modulation of immune cell extravasation and therefore, control of inflammatory reactions.
Resumo:
Tagging, displacemenat nd recapture, and ultrasonict racking of displaced mature Sunapee trout (Salvelinusa Ipinus) in Floods Pond, Maine, demonstrated that rapid within-season homing occurs in this relict form of Arctic char. Of the trout displaced about 1.8 km from their spawning ground from 1972 to 1975, 9% to 32% were recaptured one to four times within the same spawning season in trap nets set on the spawning ground. Eight of 14 trout tracked ultrasonically in 1975 homed in 2.5 to 10.0 h. Movements of the homing fish were variable; some trout homed paralleling the shoreline, others homed in open water or used a combination of near-shore and open-water movements. Behavior was similar between the sexes and during day and night, although two fish did begin to move just at sundown. Swimming speeds ranged from 15 to 35 cm s- 1 and averaged about 0 .6 body lengths s -1•. Swimming directions were not influenced by wind and wave direction, nor were swimming speeds within individual tracks influenced by cloud cover, wave height, or water depth. Heavy overcast at night m&y have inhibited movement. Sunapee trout are apparently familiar with the entire lake and travel widely within it. Visual features are postulated as orientational cues, though use of such cues is not clearly demonstrated by our experiments.
Resumo:
Campylobacter jejuni is the most common food-borne zoonotic pathogen causing human gastroenteritis worldwide and has assumed more importance in Italy following the increased consumption of raw milk. Our objectives were to get an overview of genotypes and antibiotic resistances in C. jejuni isolated from milk, cattle feces, and pigeons in dairy herds of Northern Italy. flaB-typing was applied to 78 C. jejuni isolates, previously characterized by Multi-Locus Sequence Typing, and genotypic resistances towards macrolides and quinolones based on point mutations in the 23S rRNA and gyrA genes, respectively, were determined. flaB-typing revealed 22 different types with one of them being novel and was useful to further differentiate strains with an identical Sequence Type (ST) and to identify a pigeon-specific clone. Macrolide resistance was not found, while quinolone resistance was detected in 23.3% of isolates. A relationship between specific genotypes and antibiotic resistance was observed, but was only significant for the Clonal Complex 206. Our data confirm that pigeons do not play a role in the spread of C. jejuni among cattle and they are not responsible for milk contamination. A relevant number of bulk milk samples were contaminated by C. jejuni resistant to quinolones, representing a possible source of human resistant strains.
Resumo:
Pathogenesis of chronically developing alveolar echinococcosis (AE) is characterized by a continuous, granulomatous, periparasitic infiltration of immune cells surrounding the metacestode of Echinococcus multilocularis (E.multilocularis) in the affected liver. A detailed cytokine and chemokine profile analysis of the periparasitic infiltrate in the liver has, however, not yet been carried out in a comprehensive way all along the whole course of infection in E. multilocularis intermediate hosts. We thus assessed the hepatic gene expression profiles of 18 selected cytokine and chemokine genes using qRT-PCR in the periparasitic immune reaction and the subsequent adjacent, not directly affected, liver tissue of mice from day 2 to day 360 post intra-hepatic injection of metacestode. DNA microarray analysis was also used to get a more complete picture of the transcriptional changes occurring in the liver surrounding the parasitic lesions. Profiles of mRNA expression levels in the hepatic parasitic lesions showed that a mixed Th1/Th2 immune response, characterized by the concomitant presence of IL-12α, IFN-γ and IL-4, was established very early in the development of E. multilocularis. Subsequently, the profile extended to a combined tolerogenic profile associating IL-5, IL-10 and TGF-β. IL-17 was permanently expressed in the liver, mostly in the periparasitic infiltrate; this was confirmed by the increased mRNA expression of both IL-17A and IL-17F from a very early stage, with a subsequent decrease of IL-17A after this first initial rise. All measured chemokines were significantly expressed at a given stage of infection; their expression paralleled that of the corresponding Th1, Th2 or Th17 cytokines. In addition to giving a comprehensive insight in the time course of cytokines and chemokines in E. multilocularis lesion, this study contributes to identify new targets for possible immune therapy to minimize E. multilocularis-related pathology and to complement the only parasitostatic effect of benzimidazoles in AE.
Resumo:
Natal homing plays a part in fisheries restoration. This article describes research by Dr. Jason Vokoun and his students on otoliths in migratory finfish such as river herring, alewives, etc.
Resumo:
Signatur des Originals: S 36/G13834
Resumo:
The adhesive mechanisms allowing hematopoietic progenitor cells (HPC) homing to the bone marrow (BM) after BM transplantation are poorly understood. We investigated the role of endothelial selectins and vascular cell adhesion molecule-1 (VCAM-1) in this process. Lethally irradiated recipient mice deficient in both P-and E-selectins (P/E−/−), reconstituted with minimal numbers (≤5 × 104) of wild-type BM cells, poorly survived the procedure compared with wild-type recipients. Excess mortality in P/E−/− mice, after a lethal dose of irradiation, was likely caused by a defect of HPC homing. Indeed, we observed that the recruitment of HPC to the BM was reduced in P/E−/− animals, either splenectomized or spleen-intact. Homing into the BM of P/E−/− recipient mice was further compromised when a function-blocking VCAM-1 antibody was administered. Circulating HPC, 14 hr after transplantation, were greatly increased in P/E−/− mice treated with anti-VCAM-1 compared with P/E−/− mice treated with just IgG or wild-type mice treated with either anti-VCAM-1 or IgG. Our results indicate that endothelial selectins play an important role in HPC homing to the BM. Optimal recruitment of HPC after lethal doses of irradiation requires the combined action of both selectins and VCAM-1 expressed on endothelium of the BM.
Resumo:
In contrast to naive lymphocytes, memory/effector lymphocytes can access nonlymphoid effector sites and display restricted, often tissue-selective, migration behavior. The cutaneous lymphocyte-associated antigen (CLA) defines a subset of circulating memory T cells that selectively localize in cutaneous sites mediated in part by the interaction of CLA with its vascular ligand E-selectin. Here, we report the identification and characterization of a CC chemokine, cutaneous T cell-attracting chemokine (CTACK). Both human and mouse CTACK are detected only in skin by Southern and Northern blot analyses. Specifically, CTACK message is found in the mouse epidermis and in human keratinocytes, and anti-CTACK mAbs predominantly stain the epithelium. Finally, CTACK selectively attracts CLA+ memory T cells. Taken together, these results suggest an important role for CTACK in recruitment of CLA+ T cells to cutaneous sites. CTACK is predominantly expressed in the skin and selectively attracts a tissue-specific subpopulation of memory lymphocytes.
Resumo:
Sequence analysis of chloroplast and mitochondrial large subunit rRNA genes from over 75 green algae disclosed 28 new group I intron-encoded proteins carrying a single LAGLIDADG motif. These putative homing endonucleases form four subfamilies of homologous enzymes, with the members of each subfamily being encoded by introns sharing the same insertion site. We showed that four divergent endonucleases from the I-CreI subfamily cleave the same DNA substrates. Mapping of the 66 amino acids that are conserved among the members of this subfamily on the 3-dimensional structure of I-CreI bound to its recognition sequence revealed that these residues participate in protein folding, homodimerization, DNA recognition and catalysis. Surprisingly, only seven of the 21 I-CreI amino acids interacting with DNA are conserved, suggesting that I-CreI and its homologs use different subsets of residues to recognize the same DNA sequence. Our sequence comparison of all 45 single-LAGLIDADG proteins identified so far suggests that these proteins share related structures and that there is a weak pressure in each subfamily to maintain identical protein–DNA contacts. The high sequence variability we observed in the DNA-binding site of homologous LAGLIDADG endonucleases provides insight into how these proteins evolve new DNA specificity.