915 resultados para Hollow microneedle
Resumo:
Thin-walled steel hollow flange channel beams known as LiteSteel beam (LSB) sections were developed for use as joists and bearers in various flooring systems. However, they are subjected to specific buckling and failure modes, one of them being web crippling. Despite considerable research in this area, much of the current design predictions for cold-formed steel sections are not directly applicable to LSBs. This is due to the geometry of the LSB, which consists of two closed rectangular hollow flanges, and its unique residual stress characteristics and initial geometric imperfections. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of LSBs with their flanges fastened to supports. Thirty nine web crippling tests were conducted under two flange load cases (End Two Flange (ETF) and Interior Two Flange (ITF)). Test results showed that for ETF load case the web crippling capacities increased by 50% on average while they increased by 97% for ITF load case when flanges were fastened to supports. Comparison of the ultimate web crippling capacities from tests showed that AS/NZS 4600 and AISI S100 web crippling design equations are conservative for LSB sections with flanges fastened to supports under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs with flanges fastened to supports. This paper presents the details of the experimental study into the web crippling behaviour of LSB sections with their flanges fastened under ETF and ITF load cases, and the results.
Resumo:
The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange channel beams. It is a monosymmetric channel section made by intermittently rivet fastening two torsionally rigid rectangular hollow flanges to a web plate. This process enables the end users to choose an effective combination of different web and flange plate sizes to achieve optimum design capacities. Recent research studies focused mainly on the shear behaviour of the most commonly used lipped channel beam and welded hollow flange beam sections. However, the shear behaviour of rivet fastened RHFCB has not been investigated. Therefore a detailed experimental study involving 24 shear tests was undertaken to investigate the shear behaviour and capacities of rivet fastened RHFCBs. Simply supported test specimens of RHFCB with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Comparison of experimental shear capacities with corresponding predictions from the current Australian cold-formed steel design rules showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Such enhancements to the shear behaviour and capacity were achieved with a rivet spacing of 100 mm. Improved design rules were proposed for rivet fastened RHFCBs based on the current shear design equations in AISI S100 and the direct strength method. This paper presents the details of this experimental investigation and the results.
Resumo:
This paper presents the details of experimental and numerical studies on the web crippling behaviour of hollow flange channel beams, known as LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear actions and combined actions. To date, however, no investigation has been conducted into the web crippling behaviour and strength of LSB sections under ETF and ITF load conditions. Hence experimental studies consisting of 28 tests were first conducted in this research to assess the web crippling behaviour and strengths of LSBs under two flange load cases (ETF and ITF). Experimental web crippling capacity results were then compared with the predictions from AS/NZS 4600 and AISI S100 design rules, which showed that AS/NZS 4600 and AISI S100 design equations are very unconservative for LSBs under ETF and ITF load cases. Hence improved equations were proposed to determine the web crippling capacities of LSBs. Finite element models of the tested LSBs were then developed, and used to determine the elastic buckling loads of LSBs under ETF and ITF load cases. New equations were proposed to determine the corresponding elastic buckling coefficients of LSBs. Finally suitable design rules were also developed under the Direct Strength Method format using the test results and buckling analysis results from finite element analyses.
Resumo:
The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange beams. Many experimental and numerical studies have been carried out in the past to investigate the shear behaviour of lipped channel beams. However, no research has been undertaken on the shear behaviour of rivet fastened RHFCBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of rivet fastened RHFCBs. In this research finite element models of rivet fastened RHFCBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. This paper presents the details of the finite element models of rivet fastened RHFCBs and the results. Both finite element analysis and experimental results showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Appropriate improvements have been proposed for the design rules of shear strength of rivet fastened RHFCBs within the Direct Strength Method format.
Resumo:
The rivet-fastened rectangular hollow flange channel beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange steel beams. No research has been undertaken on the shear behaviour and strength of rivet fastened RHFCBs with web openings. Hence a detailed experimental study involving 30 shear tests was undertaken to investigate the shear behaviour and strength of rivet fastened RHFCBs with web openings. Experimental results showed that the current design rules are inadequate for the shear design of Rivet fastened RHFCBs with web openings. Improved design equations have been proposed for the shear strength of rivet fastened RHFCBs with web openings.
Resumo:
The rivet-fastened rectangular hollow flange channel beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange steel beams. To date, no investigation has been conducted on their web crippling behaviour and strengths. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of rivet fastened RHFCBs under End Two Flange (ETF) and Interior Two Flange (ITF) load cases. Experimental results showed that the current design rules are unconservative for rivet fastened RHFCB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of rivet fastened RHFCBs.
Resumo:
Hierarchical SnO2 hollow spheres self-assembled from nanosheets were prepared with and without carbon coating. The combination of nanosized architecture, hollow structure, and a conductive carbon layer endows the SnO2-based anode with improved specific capacity and cycling stability, making it more promising for use in lithium ion batteries.
Resumo:
Superhydrophobic and superhydrophilic surfaces have been extensively investigated due to their importance for industrial applications. It has been reported, however, that superhydrophobic surfaces are very sensitive to heat, ultraviolet (UV) light, and electric potential, which interfere with their long-term durability. In this study, we introduce a novel approach to achieve robust superhydrophobic thin films by designing architecture-defined complex nanostructures. A family of ZnO hollow microspheres with controlled constituent architectures in the morphologies of 1D nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks, respectively, was synthesized via a two-step self-assembly approach, where the oligomers or the constituent nanostructures with specially designed structures are first formed from surfactant templates, and then further assembled into complex morphologies by the addition of a second co-surfactant. The thin films composed of two-step synthesized ZnO hollow microspheres with different architectures presented superhydrophobicities with contact angles of 150°-155°, superior to the contact angle of 103° for one-step synthesized ZnO hollow microspheres with smooth and solid surfaces. Moreover, the robust superhydrophobicity was further improved by perfluorinated silane surface modification. The perfluorinated silane treated ZnO hollow microsphere thin films maintained excellent hydrophobicity even after 75 h of UV irradiation. The realization of environmentally durable superhydrophobic surfaces provides a promising solution for their long-term service under UV or strong solar light irradiations.
Resumo:
It is a challenge to increase the visible-light photoresponses of wide-gap metal oxides. In this study, we proposed a new strategy to enhance the visible-light photoresponses of wide-gap semiconductors by deliberately designing a multi-scale nanostructure with controlled architecture. Hollow ZnO microspheres with constituent units in the shape of one-dimensional (1D) nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks are synthesized via an approach of two-step assembly, where the oligomers or the constituent nanostructures with specially designed structures are first formed, and then further assembled into complex morphologies. Through deliberate designing of constituent architectures allowing multiple visible-light scattering, reflections, and dispersion inside the multiscale nanostructures, enhanced wide range visible-light photoresponses of the ZnO hollow microspheres were successfully achieved. Compared to the one-step synthesized ZnO hollow microspheres, where no nanostructured constituents were produced, the ZnO hollow microspheres with 2D nanosheet stacks presented a 50 times higher photocurrent in the visible-light range (λ > 420 nm). The nanostructure induced visible-light photoresponse enhancement gives a direction to the development of novel photosensitive materials.
Resumo:
A three-dimensional exact solution for determining the thermal stresses in a finite hollow cylinder subject to a steady state axisymmetric temperature field over one of its end surfaces has been given. Numerical results for a hollow cylinder, having lenght to outer diameter ratio equal to one and inner to outer diameter ratio equal to 0.75, subjected to a symmetric temperature variation over the end surfaces of the cylinder have been given.
Resumo:
Hemispherical colloidal nanowells or microwells with hollow interiors are becoming increasingly important for the encapsulation of functional materials. There has been rapid progress to develop new methods to obtain such structures. In this work, we present emulsification approach to generate hemisphere and microcapsules of biocompatible organic polymer. The precise control over the size is exhibited by applying variable vortex effect. The hemispheres and microcapsules of a copolymer (BPVA-PVA) were characterized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). These structures were used for loading of hydrophilic molecules and submicron colloidal particles to demonstrate their potential application. The introduction of hydrophobic groups on poly(vinyl alcohol) was crucial to obtain these structures.
Resumo:
Nanoporous structures are widely used for many applications and hence it Is important to investigate their thermal stability. We study the stability of spherical nanoporous aggregates using phase-field simulations that explore systematically the effect of grain boundary diffusion, surface diffusion, and grain boundary mobility on the pathways for microstructural evolution. Our simulations for different combinations of surface and GB diffusivity and GB mobility show four distinct microstructural pathways en route to 100% density: multiple dosed pores, hollow shells, hollow shells with a core, and multiple interconnected pores. The microstructures from our simulations are consistent with experimental observations in several different systems. Our results have important implications for rational synthesis of hollow nanostructures or aggregates with open pores, and for controlling the stability of nanoporous aggregates that are widely used for many applications.
Resumo:
Vapor-phase pyrolysis of Fe(CO)(5) in the presence of another carbon source such as CO or Ca He yields iron-filled or hollow nanotubes depending on the relative concentration of the carbon source. Essentially single-walled nanotubes are obtained when the C6H6/Fe(CO)(5) ratio is high. Pyrolysis of metallocenes yields metal-filled nanotubes and hollow nanotubes are obtained when metallocenes are pyrolyzed along with benzene. Metal-decorated nanotubes are also obtained by this method.
Resumo:
A mathematical model describing the dynamics of mammalian cell growth in hollow fibre bioreactor operated in closed shell mode is developed. Mammalian cells are assumed to grow as an expanding biofilm in the extra-capillary space surrounding the fibre. Diffusion is assumed to be the dominant process in the radial direction while axial convection dominates in the lumen of the bioreactor. The transient simulation results show that steep gradients in the cell number are possible under the condition of substrate limitation. The precise conditions which result in nonuniform growth of cells along the length of the bioreactor are delineated. The effect of various operating conditions, such as substrate feed rate, length of the bioreactor and diffusivity of substrate in different regions of the bioreactor, on the bioreactor performance are evaluated in terms of time required to attain the steady-state. The rime of growth is introduced as a measure of effectiveness factor for the bioreactor and is found to be dependent on two parameters, a modified Peclet number and a Thiele modulus. Diffusion, reaction and/or convection control regimes are identified based on these two parameters. The model is further extended to include dual substrate growth limitations, and the relative growth limiting characteristics of two substrates are evaluated. (C) 1997 Elsevier Science Ltd.
Resumo:
Finite element analyses of a long hollow cylinder having an axisymmetric circumferential internal edge crack, subjected to convective cooling on the inner surface are performed. The transient thermal stress intensity factor is estimated using a domain version of the J-integral method. The effect of the thickness of the cylinder, crack length, and heat transfer coefficient on the stress intensity factor history are studied. The variations of critical normalized stress intensity factor with crack length-to-thickness ratio for different parameters are presented. The results show that if a small inner surface crack begins to grow, its stress intensity factor will increase with increase in crack length, reach a maximum, and then begin to drop. Based on the results, a fracture-based design methodology for cracked hollow pipes under transient thermal loads is discussed.