961 resultados para Hoftheater (Karlsruhe, Germany)
Resumo:
In this paper we present a novel approach to detect people meeting. The proposed approach works by translating people behaviour from trajectory information into semantic terms. Having available a semantic model of the meeting behaviour, the event detection is performed in the semantic domain. The model is learnt employing a soft-computing clustering algorithm that combines trajectory information and motion semantic terms. A stable representation can be obtained from a series of examples. Results obtained on a series of videos with different types of meeting situations show that the proposed approach can learn a generic model that can effectively be applied on the behaviour recognition of meeting situations.
Resumo:
While a multitude of motion segmentation algorithms have been presented in the literature, there has not been an objective assessment of different approaches to fusing their outputs. This paper investigates the application of 4 different fusion schemes to the outputs of 3 probabilistic pixel-level segmentation algorithms. We performed an extensive experimentation using 6 challenge categories from the changedetection.net dataset demonstrating that in general simple majority vote proves to be more effective than more complex fusion schemes.
Resumo:
The interaction between aerosols and sun light plays an important role in the radiative balance of Earth’s atmosphere. This interaction is obtained by measuring the removal (extinction), redistribution (scattering), and transformation into heat (absorption) of light by the aerosols; i.e. their optical properties. Knowledge of these properties is crucial for our understanding of the atmospheric system. rn Light absorption by aerosols is a major contributor to the direct and indirect effects on our climate system, and an accurate and sensitive measurement method is crucial to further our understanding. A homebuilt photoacoustic sensor (PAS), measuring at a 532nm wavelength, was fully characterized and its functionality validated for measurements of absorbing aerosols. The optical absorption cross-sections of absorbing polystyrene latex spheres, to be used as a standard for aerosol absorption measurements, were measured and compared to literature values. Additionally, a calibration method using absorbing aerosol of known complex refractive index was presented.rn A new approach to retrieve the effective broadband refractive indices (mbroad,eff) of aerosol particles by a white light aerosol spectrometer (WELAS) optical particle counter (OPC) was achieved. Using a tandem differential mobility analyzer (DMA)-OPC system, the nbroad,eff are obtained for both laboratory and field applications. This method was tested in the laboratory using substances with a wide range of optical properties and it was used in ambient measurements to retrieve the nbroad,eff of biomass burning aerosols in a nationwide burning event in Israel. The retrieved effective broadband refractive indices for laboratory generated scattering aerosols were: ammonium sulfate (AS), glutaric acid (GA), and sodium chloride, all within 4% of literature values. For absorbing substances, nigrosine and various mixtures of nigrosine with AS and GA were measured, as well as a lightly absorbing substance, Suwannee river fulvic acid (SRFA). For the ambient measurements, the calibration curves generated from this method were to follow the optical evolution of biomass burning (BB) aerosols. A decrease in the overall aerosol absorption and scattering for aged aerosols during the day after the fires compared to the smoldering phase of the fires was found. rn The connection between light extinction of aerosols, their chemical composition and hygroscopicity for particles with different degrees of absorption was studied. The extinction cross-section (σext) at 532nm for different mobility diameters was measured at 80% and 90% relative humidity (RH), and at an RH<10%. The ratio of the humidified aerosols to the dry ones, fRHext(%RH,Dry), is presented. For purely scattering aerosols, fRHext(%RH,Dry) is inversely proportional with size; this dependence was suppressed for lightly absorbing ones. In addition, the validity of the mixing rules for water soluble absorbing aerosols is explored. The difference between the derived and calculated real parts of the complex RIs were less than 5.3% for all substances, wavelengths, and RHs. The obtained imaginary parts for the retrieved and calculated RIs were in good agreement with each other, and well within the measurement errors of retrieval from pulsed CRD spectroscopy measurements. Finally, a core-shell structure model is also used to explore the differences between the models, for substances with low growth factors, under these hydration conditions. It was found that at 80% RH and for size parameters less than 2.5, there is less than a 5 % difference between the extinction efficiencies calculated with both models. This difference is within measurement errors; hence, there is no significant difference between the models in this case. However, for greater size parameters the difference can be up to 10%. For 90% RH the differences below a size parameter of 2.5 were up to 7%.rn Finally, the fully characterized PAS together with a cavity ring down spectrometer (CRD), were used to study the optical properties of soot and secondary organic aerosol (SOA) during the SOOT-11 project in the AIDA chamber in Karlsruhe, Germany. The fresh fractal-like soot particles were allowed to coagulate for 28 hours before stepwise coating them with SOA. The single scattering albedo for fresh fractal-like soot was measured to be 0.2 (±0.03), and after allowing the soot to coagulate for 28 hours and coating it with SOA, it increased to 0.71(±0.01). An absorption enhancement of the coated soot of up to 1.71 (±0.03) times from the non-coated coagulated soot was directly measured with the PAS. Monodisperse measurements of SOA and soot coated with SOA were performed to derive the complex refractive index (m) of both aerosols. A complex refractive index of m = 1.471(±0.008) + i0.0(±0.002) for the SOA-αO3 was retrieved. For the compact coagulated soot a preliminary complex refractive index of m = 2.04(+0.21/-0.14) + i0.34(+0.18/-0.06) with 10nm(+4/-6) coating thickness was retrieved.rn These detail properties can be use by modelers to decrease uncertainties in assessing climatic impacts of the different species and to improve weather forecasting.rn
Resumo:
A portable Fourier transform spectrometer (FTS), model EM27/SUN, was deployed onboard the research vessel Polarstern to measure the column-average dry air mole fractions of carbon dioxide (XCO2) and methane (XCH4) by means of direct sunlight absorption spectrometry. We report on technical developments as well as data calibration and reduction measures required to achieve the targeted accuracy of fractions of a percent in retrieved XCO2 and XCH4 while operating the instrument under field conditions onboard the moving platform during a 6-week cruise on the Atlantic from Cape Town (South Africa, 34° S, 18° E; 5 March 2014) to Bremerhaven (Germany, 54° N, 19° E; 14 April 2014). We demonstrate that our solar tracker typically achieved a tracking precision of better than 0.05° toward the center of the sun throughout the ship cruise which facilitates accurate XCO2 and XCH4 retrievals even under harsh ambient wind conditions. We define several quality filters that screen spectra, e.g., when the field of view was partially obstructed by ship structures or when the lines-of-sight crossed the ship exhaust plume. The measurements in clean oceanic air, can be used to characterize a spurious air-mass dependency. After the campaign, deployment of the spectrometer alongside the TCCON (Total Carbon Column Observing Network) instrument at Karlsruhe, Germany, allowed for determining a calibration factor that makes the entire campaign record traceable to World Meteorological Organization (WMO) standards. Comparisons to observations of the GOSAT satellite and concentration fields modeled by the European Centre for Medium-Range Weather Forecasts (ECMWF) Copernicus Atmosphere Monitoring Service (CAMS) demonstrate that the observational setup is well suited to provide validation opportunities above the ocean and along interhemispheric transects.
Resumo:
Mode of access: Internet.
Resumo:
Errata at end.
Resumo:
We present recent results on femtosecond microfabrication of key components for integrated optics such as highly curved low-loss waveguides in glasses, depressed cladding waveguides in crystals. Details of microfabrication and characterisation are discussed.
Resumo:
The Haloclean process, a rotary kiln process for pyrolysis, developed by researchers at the Forschungszentrum Karlsruhe, Germany makes it possible to recover copper and precious metals from the scrap, ready for recycling. Pyrolysis neatly turns brominated electronic scrap plastics into recyclable copper and methanol feedstock while removing the halogens. The process has demonstrated its ability to recycle brominated electronic scrap in extensive parametric studies. A method suitable for the selective production of HBr in the presence of chlorine is the treatment of the pyrolysis oils with molten polypropylene. This treatment is offers the possibility to use the gas and liquid fraction from pyrolysis of electronic scrap as fossil fuel substitute in copper smelter processes or as feedstock for methanol production via gasification.
Resumo:
Provenance plays a pivotal in tracing the origin of something and determining how and why something had occurred. With the emergence of the cloud and the benefits it encompasses, there has been a rapid proliferation of services being adopted by commercial and government sectors. However, trust and security concerns for such services are on an unprecedented scale. Currently, these services expose very little internal working to their customers; this can cause accountability and compliance issues especially in the event of a fault or error, customers and providers are left to point finger at each other. Provenance-based traceability provides a mean to address part of this problem by being able to capture and query events occurred in the past to understand how and why it took place. However, due to the complexity of the cloud infrastructure, the current provenance models lack the expressibility required to describe the inner-working of a cloud service. For a complete solution, a provenance-aware policy language is also required for operators and users to define policies for compliance purpose. The current policy standards do not cater for such requirement. To address these issues, in this paper we propose a provenance (traceability) model cProv, and a provenance-aware policy language (cProvl) to capture traceability data, and express policies for validating against the model. For implementation, we have extended the XACML3.0 architecture to support provenance, and provided a translator that converts cProvl policy and request into XACML type.
Resumo:
Die untersuchten Schluffe und Kiese sind unter kaltzeitlichen Bedingungen in einem See mit Schwimmpflanzengesellschaften abgelagert worden. Zur Sedimentationszeit gab es in der Umgebung des Sees eine tundrenartige Vegetation, die auch Steppenarten enthielt.