992 resultados para Highways and roads


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the area between the Townships of Grantham and Louth. Identified structures associated with the Canal include the floating tow path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Features of the First Welland Canal are noted in red ink and include the old towing path, and the original bed of the Twelve Mile Creek. Local area landmarks are also identified and include streets and roads (ex. New Road, 1st Concession Road, and an unnamed road in the top right corner), an unnamed bridge along New Road, J. Martindale's House, an Old Saw Mill, Richardsons Creek, Georges Point, and an oak tree at Georges Point. Properties and property owners of note are: Concession 2 Lot 23 and Concession 3 Lot 23 in the Grantham Township, Concession 2 Lots 1 and 2, and Concession 3 Lots 1 and 2 in the Louth Township, Peter Weaver, J. Martindale, and John Bonner. A property belonging to the Board of Works is outlined in red at Georges Point.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the area between the Townships of Louth and Grantham. Identified structures associated with the Canal include the floating tow path. It is not labelled, but runs along the bottom of the map. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks that are identified include streets and roads (ex. New Road, and Road to Port Dalhousie), and an unnamed bridge along New Road. Richardson's Creek is identified in pencil. Properties and property owners of note are: Lot 23 in Grantham Township, Lots 1 and 2 in Louth Township, John Bonner, John Martindale, Geo. E. Read, Thomas Read, N. Pawling, and the Board of Works.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the Town of St. Catharines. Identified structures associated with the Canal include Lock 3 and its Lock House, Lock 4 and its Lock House, Hydraulic Race, and a floating tow path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include streets and roads (ex. Geneva Street, Ontario Street, St. Paul Street, and Merritville Road), Lincoln Mills and its Store House, T. M. Merritt's Store House, Cooper Shop, L. Shickluna's Dry Dock, Peter McGill's Grist Mill, J. Flint's Saw Factory, T. Hosteter's Gristing Mill, J. Dougan Builder's shop or office, Norris and Nelson Mill, G. N. Oil Foundry and its Machine Shop and Boiler, a barrel shed, woolen factory, Estate of P. Nihen (or T. Nihan), Norris and Nelson's Wharf, the W. C. Office, and structures (possibly houses) or small properties belonging to T. Adams, and A. K. Boomer. Properties and property owners of note are: Concession 6 Lots 16, 17, and 18, Concession 7 Lots 16, 17, and 18, Alva Dittrick, James R. Benson, W. B. Robinson, and C. Phelps.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the Town of St. Catharines. Identified structures associated with the Canal include Lock 4, Hydraulic Race, floating tow path, and the Canal waterway itself. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include streets and roads (ex. Geneva Street, St. Paul Street, Queenston Street, Niagara Street and Mill Street), C. Phelp's Grist Mill and Store House, Stinson's Distillery, and several unnamed bridges. Properties and property owners of note are: Concession 6 Lot 16, J. R. Benson, Calvin Phelps, J. Hudson, David Gray, A. Roberts, Mrs. McDonell, J. S. McDonell, T. B. Wragg, J. Donaldson, W. Barr Jr., C. L. Hall, G. Ward, Ridout Bros and Co., and the St. Catharines Grass Co.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the Town of St. Catharines. Identified structures associated with the Canal include Lock 4, Lock House, Lock 5, Small Lock House, the towing path, and Gasometer for Canal. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include streets and roads (ex. Geneva Street, Queenston Street, and Academy Street), C. Phelps Mill and Store House, St. Catharines and Welland Canal Gas Works, William Mahony's Tannery, Cooper Shop, a barrel shed, barn, and gas tanks. Properties and property owners of note are: Concession 6 Lots 14, 14, and 16, Concession 7 Lots 14, 15, and 16, C. Phelps, R. M. Clement, Orson Phelps, R. Collier, D. P. Haynes, W. Chace, and John Soper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the Canal along the eastern edge of the Town of St. Catharines. Identified structures associated with the Canal include Lock 5 and the towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include bridges, streets, and roads (ex. Queenston Street, St. Catharines Macdamized Road and Suspension Bridge), a Pond, a number of unnamed bridges, Stinson's Distillery, and R. Collier's Saw Mill. Properties and property owners of note are: Concession 6 Lots 14 and 15, R. Collier, W. Gillespie, Orson Phelps, W. Chase, M. Bryant, John Soper, Winsor Chace, John Berryman, John Boyle, J. Madigan, B. F. Reynolds, W. Smaill, F. Stinson, G. Ward and Mrs. Soper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the Canal along the eastern edge of the Town of St. Catharines. Identified structures associated with the Canal include Lock 7, Lock House Lot, and the towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include bridges, streets, and roads (ex. Queenston Road, St. Catharines Macdamized Road and Suspension Bridge), a hydraulic race, and the Hydraulic Aqueduct. Properties and property owners of note are: Concession 7 Lots 12, 13, and 14, M. Bryant, Mrs. Soper, J. Capner, O. Phelps, P. Marren, Mrs. Parnell, J. Carty, Mrs. Ward, and J. Goodenew.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the Grantham Township between the Town of St. Catharines and Merritton. Identified structures associated with the Canal include Locks 8, 9, and 10, waste weirs, the towing path, and several floating bridges. The surveyors' measurements and notes can be seen in red and black ink and pencil. Several stones and tree stumps likely used in the measurements are identified on the map. Local area landmarks are also identified and include streets and roads(ex. Macadamized Road to Thorold), J. Hamilton's Hotel, a school house, McCoy's Farm House, Bradley's House, O. Phelps Saw Mill, Disher and Hait's Woolen Mill, Centreville Mills, a bridge, several barns, and a number of structures (possibly houses, cabins, or shops) belonging to: P. McCoy, E. McLachlan, T. Wilson, W. Wilson, M. Bradley, S. Bradley, P. Boyle, J. Bradley, E. Grant, and W. Church. Lock 12 and 15 of the original canal are also identified. Properties and property owners of note are: Concession 8 Lots 12, 13 and 14, O. J. Phelps, P. McCoy, A. Bradley, C. Bradley, T. Reed, O. Clifford, J. Bradley, W. C. Loan Company, Duffin, and T. Towers Mill Lot.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the Grantham Township along the outskirts of Merritton. Identified structures associated with the Canal include Locks 11, 12, 13, 14, and 15, Lock House Lot, and the towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Several stones likely used in the measurements are identified on the map. Local area landmarks are also identified and include streets and roads(ex. Hartzel Road and Macadamized Road), the Great Western Railroad, Swing Bridge, Thorold Station and its structures (ex. freight house, office, water tank, and wood house), Gordon and Mackay Houses, Gordon and Mackay's Cotton Mill, hydraulic race, a wharf, pond, and an unnamed bridge. Properties and property owners of note are: Concession 9 Lots 12 and 13, A. Bradley, John O'Coner, G. Grant, J. Bradley, J. Vanderburgh, O. Clifford and a parcel of land leased Gordon and Mackay.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the Grantham Township at Merritton. Identified structures associated with the Canal include Locks 15, 16, 17, and 18, and the towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include streets and roads (ex. Hartzel Road and Macadamized Road), Lybster Cotton Mill, St. Catharines Paper Mill, J. Brown Cotton Mills, hydraulic race, a pond, several barns, and a number of structures (likely houses or cabins) belonging to: J. McNamara, M. Moran, A. Delany, T. Joyce, J. Delany, C. Blake, F. Weaver, W. Leeson, and Mrs. Aikins. Properties of note are: Concession 10 Lots 11 and 12. A number of reserved properties exist and are outlined in blue. They include three reserved properties for lock lots, and one large property reserved for a quarry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing south Merritton along the boundary between the Grantham and Thorold Townships. Identified structures associated with the Canal include Locks 19, 20, 21, and 22, Lock Tenders House, and the towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include streets and roads (ex. Pine Street and Macadamized Road), J. Brown Cement Mill, W. B. Hendershot Saw Mill, W. Parnall Spoke and Sash Factory, W. Beatty Saw Mill, W. Beatty Tannery, a number of structures (possibly houses) belonging to: Mrs. Aikins, J. Battle, and E. Keefer, and a foundry, smithy, and machine shop (all of which possible belonged to J. Dobbie). Properties and property owners of note are: Concession 10 Lots 9 and 10, W. C. Loan Company, P.H. Ball, and J. Keefer. Two small properties belonging to W. B. Hendershot and W. Beatty exist and are outlined in red. A half acre property reserved for a lock lot exists and is outlined in blue. An additional property reserved for a quarry is also identified, but not outlined.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the canal as it passes through the Village of Thorold. Identified structures associated with the Canal include Locks 23, 24, and 25, a Guard Gate, Lock House Lot, the Little Deep Cut, and the towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include streets and roads(ex. Pine Street and Front Street), a basin, a mill race, McPherson and Wier's Grist Mill, Brown and Ross Flouring Mill, R. James Store, J. Brown Cement Mill, W. B. Hendershots Store, Keefers Mill, J. Woodward Grist Mill, Brierly McWhirter and Co. Cotton Mill, E. W. Stephenson Tavern, a factory and a saw mill on W. H. Ward's property, a flouring mill, engine house, a store house, several barns, J. Brown's Wharf, and a number of structures belonging to: Jenkinson, Mrs. McCarty, John Clay, M. McDonnah, Mrs. Donahoc, W. B. Hendershott, Mrs. Pawling, and Christy. Properties and property owners of note are: Lots 8, 9, 16, and 17, W. H. Ward, J. Keefer, G. Keefer Jr., G. Keefer Sr., Dr. Rolls, W. Hendershott, Cleveland, Lucy, and R. Leeper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the canal as it passes through the Village of Allanburgh. Identified structures and features associated with the Canal include Lock 26, a Guard Lock, Lock Tender's House, the New Cut, waste wear, and the towing path. Parts of the old canal are indentified and include Old Lock 36 and 37, and the Old Cut. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include streets and roads (ex. Holland Road, Centre Street, Falls Street, Canal Street, and Clifton Street), Allanburgh Hotel, Rannies Store, Wright and Duncan Grist Mill, A. Vanderburgh Saw Mill, W. Pennock Shingle Factory, John Harper Tavern, a very delapitated Grist and Saw Mill, store house, a shanty, and a number of other structures - some of which are identified by their owners: A. Vanderburgh, W. Wright, C. Brent, and H. Mussen. Properties and property owners of note are: Lots 118 and 119, Captain Creighton, and William H. Merritt Jr. A number of small properties labeled 1 through 39 are present and of these 6 - 15 are reserved for a Mill Site and are outlined in red. Several other pieces of land are outlined in blue and belong to: W. B. Hendershot, P. Finlay, W. Wright, and L. Leslie. There is also a piece of land reserved for hydraulic purposes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the canal at Port Robinson. Identified structures and features associated with the Canal include the Deep Cut, Old Channel of Canal, and the towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include streets and roads (ex. Road to Port Allanburg), the Spoil Bank, an island, several bridges, and a church. Several unidentified structures are present but not labeled. Properties and property owners of note are: Lots 202, 203, and 204. Lot 203 is divided into several properties labeled A - J. Owners of these properties include James McCoppen, John Coulter, James Griffith, John C. Jordan, W. Hendershot, John Greer, Charles Richards, C. Stuart, and S. D. Woodruff. Other property owners include D. McFarland.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The country has witnessed tremendous increase in the vehicle population and increased axle loading pattern during the last decade, leaving its road network overstressed and leading to premature failure. The type of deterioration present in the pavement should be considered for determining whether it has a functional or structural deficiency, so that appropriate overlay type and design can be developed. Structural failure arises from the conditions that adversely affect the load carrying capability of the pavement structure. Inadequate thickness, cracking, distortion and disintegration cause structural deficiency. Functional deficiency arises when the pavement does not provide a smooth riding surface and comfort to the user. This can be due to poor surface friction and texture, hydro planning and splash from wheel path, rutting and excess surface distortion such as potholes, corrugation, faulting, blow up, settlement, heaves etc. Functional condition determines the level of service provided by the facility to its users at a particular time and also the Vehicle Operating Costs (VOC), thus influencing the national economy. Prediction of the pavement deterioration is helpful to assess the remaining effective service life (RSL) of the pavement structure on the basis of reduction in performance levels, and apply various alternative designs and rehabilitation strategies with a long range funding requirement for pavement preservation. In addition, they can predict the impact of treatment on the condition of the sections. The infrastructure prediction models can thus be classified into four groups, namely primary response models, structural performance models, functional performance models and damage models. The factors affecting the deterioration of the roads are very complex in nature and vary from place to place. Hence there is need to have a thorough study of the deterioration mechanism under varied climatic zones and soil conditions before arriving at a definite strategy of road improvement. Realizing the need for a detailed study involving all types of roads in the state with varying traffic and soil conditions, the present study has been attempted. This study attempts to identify the parameters that affect the performance of roads and to develop performance models suitable to Kerala conditions. A critical review of the various factors that contribute to the pavement performance has been presented based on the data collected from selected road stretches and also from five corporations of Kerala. These roads represent the urban conditions as well as National Highways, State Highways and Major District Roads in the sub urban and rural conditions. This research work is a pursuit towards a study of the road condition of Kerala with respect to varying soil, traffic and climatic conditions, periodic performance evaluation of selected roads of representative types and development of distress prediction models for roads of Kerala. In order to achieve this aim, the study is focused into 2 parts. The first part deals with the study of the pavement condition and subgrade soil properties of urban roads distributed in 5 Corporations of Kerala; namely Thiruvananthapuram, Kollam, Kochi, Thrissur and Kozhikode. From selected 44 roads, 68 homogeneous sections were studied. The data collected on the functional and structural condition of the surface include pavement distress in terms of cracks, potholes, rutting, raveling and pothole patching. The structural strength of the pavement was measured as rebound deflection using Benkelman Beam deflection studies. In order to collect the details of the pavement layers and find out the subgrade soil properties, trial pits were dug and the in-situ field density was found using the Sand Replacement Method. Laboratory investigations were carried out to find out the subgrade soil properties, soil classification, Atterberg limits, Optimum Moisture Content, Field Moisture Content and 4 days soaked CBR. The relative compaction in the field was also determined. The traffic details were also collected by conducting traffic volume count survey and axle load survey. From the data thus collected, the strength of the pavement was calculated which is a function of the layer coefficient and thickness and is represented as Structural Number (SN). This was further related to the CBR value of the soil and the Modified Structural Number (MSN) was found out. The condition of the pavement was represented in terms of the Pavement Condition Index (PCI) which is a function of the distress of the surface at the time of the investigation and calculated in the present study using deduct value method developed by U S Army Corps of Engineers. The influence of subgrade soil type and pavement condition on the relationship between MSN and rebound deflection was studied using appropriate plots for predominant types of soil and for classified value of Pavement Condition Index. The relationship will be helpful for practicing engineers to design the overlay thickness required for the pavement, without conducting the BBD test. Regression analysis using SPSS was done with various trials to find out the best fit relationship between the rebound deflection and CBR, and other soil properties for Gravel, Sand, Silt & Clay fractions. The second part of the study deals with periodic performance evaluation of selected road stretches representing National Highway (NH), State Highway (SH) and Major District Road (MDR), located in different geographical conditions and with varying traffic. 8 road sections divided into 15 homogeneous sections were selected for the study and 6 sets of continuous periodic data were collected. The periodic data collected include the functional and structural condition in terms of distress (pothole, pothole patch, cracks, rutting and raveling), skid resistance using a portable skid resistance pendulum, surface unevenness using Bump Integrator, texture depth using sand patch method and rebound deflection using Benkelman Beam. Baseline data of the study stretches were collected as one time data. Pavement history was obtained as secondary data. Pavement drainage characteristics were collected in terms of camber or cross slope using camber board (slope meter) for the carriage way and shoulders, availability of longitudinal side drain, presence of valley, terrain condition, soil moisture content, water table data, High Flood Level, rainfall data, land use and cross slope of the adjoining land. These data were used for finding out the drainage condition of the study stretches. Traffic studies were conducted, including classified volume count and axle load studies. From the field data thus collected, the progression of each parameter was plotted for all the study roads; and validated for their accuracy. Structural Number (SN) and Modified Structural Number (MSN) were calculated for the study stretches. Progression of the deflection, distress, unevenness, skid resistance and macro texture of the study roads were evaluated. Since the deterioration of the pavement is a complex phenomena contributed by all the above factors, pavement deterioration models were developed as non linear regression models, using SPSS with the periodic data collected for all the above road stretches. General models were developed for cracking progression, raveling progression, pothole progression and roughness progression using SPSS. A model for construction quality was also developed. Calibration of HDM–4 pavement deterioration models for local conditions was done using the data for Cracking, Raveling, Pothole and Roughness. Validation was done using the data collected in 2013. The application of HDM-4 to compare different maintenance and rehabilitation options were studied considering the deterioration parameters like cracking, pothole and raveling. The alternatives considered for analysis were base alternative with crack sealing and patching, overlay with 40 mm BC using ordinary bitumen, overlay with 40 mm BC using Natural Rubber Modified Bitumen and an overlay of Ultra Thin White Topping. Economic analysis of these options was done considering the Life Cycle Cost (LCC). The average speed that can be obtained by applying these options were also compared. The results were in favour of Ultra Thin White Topping over flexible pavements. Hence, Design Charts were also plotted for estimation of maximum wheel load stresses for different slab thickness under different soil conditions. The design charts showed the maximum stress for a particular slab thickness and different soil conditions incorporating different k values. These charts can be handy for a design engineer. Fuzzy rule based models developed for site specific conditions were compared with regression models developed using SPSS. The Riding Comfort Index (RCI) was calculated and correlated with unevenness to develop a relationship. Relationships were developed between Skid Number and Macro Texture of the pavement. The effort made through this research work will be helpful to highway engineers in understanding the behaviour of flexible pavements in Kerala conditions and for arriving at suitable maintenance and rehabilitation strategies. Key Words: Flexible Pavements – Performance Evaluation – Urban Roads – NH – SH and other roads – Performance Models – Deflection – Riding Comfort Index – Skid Resistance – Texture Depth – Unevenness – Ultra Thin White Topping