896 resultados para High-dimensional data visualization
Resumo:
The possibility of using a time sequence of surface pressure observations in four-dimensional data assimilation is being investigated. It is shown that a linear multilevel quasi-geostrophic model can be updated successfully with surface data alone, provided the number of time levels are at least as many as the number of vertical levels. It is further demonstrated that current statistical analysis procedures are very inefficient to assimilate surface observations, and it is shown by numerical experiments that the vertical interpolation must be carried out using the structure of the most dominating baroclinic mode in order to obtain a satisfactory updating. Different possible ways towards finding a practical solution are being discussed.
Resumo:
Numerical weather prediction can be regarded as an initial value problem whereby the governing atmospheric equations are integrated forward from fully determined initial values of the meteorological parameters. However, in spite of the considerable improvements of the observing systems in recent years, the initial values are known only incompletely and inaccurately and one of the major tasks of any forecasting centre is to determine the best possible initial state from available observations.
Resumo:
The purpose of this lecture is to review recent development in data analysis, initialization and data assimilation. The development of 3-dimensional multivariate schemes has been very timely because of its suitability to handle the many different types of observations during FGGE. Great progress has taken place in the initialization of global models by the aid of non-linear normal mode technique. However, in spite of great progress, several fundamental problems are still unsatisfactorily solved. Of particular importance is the question of the initialization of the divergent wind fields in the Tropics and to find proper ways to initialize weather systems driven by non-adiabatic processes. The unsatisfactory ways in which such processes are being initialized are leading to excessively long spin-up times.
Resumo:
With the introduction of new observing systems based on asynoptic observations, the analysis problem has changed in character. In the near future we may expect that a considerable part of meteorological observations will be unevenly distributed in four dimensions, i.e. three dimensions in space and one in time. The term analysis, or objective analysis in meteorology, means the process of interpolating observed meteorological observations from unevenly distributed locations to a network of regularly spaced grid points. Necessitated by the requirement of numerical weather prediction models to solve the governing finite difference equations on such a grid lattice, the objective analysis is a three-dimensional (or mostly two-dimensional) interpolation technique. As a consequence of the structure of the conventional synoptic network with separated data-sparse and data-dense areas, four-dimensional analysis has in fact been intensively used for many years. Weather services have thus based their analysis not only on synoptic data at the time of the analysis and climatology, but also on the fields predicted from the previous observation hour and valid at the time of the analysis. The inclusion of the time dimension in objective analysis will be called four-dimensional data assimilation. From one point of view it seems possible to apply the conventional technique on the new data sources by simply reducing the time interval in the analysis-forecasting cycle. This could in fact be justified also for the conventional observations. We have a fairly good coverage of surface observations 8 times a day and several upper air stations are making radiosonde and radiowind observations 4 times a day. If we have a 3-hour step in the analysis-forecasting cycle instead of 12 hours, which is applied most often, we may without any difficulties treat all observations as synoptic. No observation would thus be more than 90 minutes off time and the observations even during strong transient motion would fall within a horizontal mesh of 500 km * 500 km.
Resumo:
The problem of spurious excitation of gravity waves in the context of four-dimensional data assimilation is investigated using a simple model of balanced dynamics. The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode, and can be initialized such that the model evolves on a so-called slow manifold, where the fast motion is suppressed. Identical twin assimilation experiments are performed, comparing the extended and ensemble Kalman filters (EKF and EnKF, respectively). The EKF uses a tangent linear model (TLM) to estimate the evolution of forecast error statistics in time, whereas the EnKF uses the statistics of an ensemble of nonlinear model integrations. Specifically, the case is examined where the true state is balanced, but observation errors project onto all degrees of freedom, including the fast modes. It is shown that the EKF and EnKF will assimilate observations in a balanced way only if certain assumptions hold, and that, outside of ideal cases (i.e., with very frequent observations), dynamical balance can easily be lost in the assimilation. For the EKF, the repeated adjustment of the covariances by the assimilation of observations can easily unbalance the TLM, and destroy the assumptions on which balanced assimilation rests. It is shown that an important factor is the choice of initial forecast error covariance matrix. A balance-constrained EKF is described and compared to the standard EKF, and shown to offer significant improvement for observation frequencies where balance in the standard EKF is lost. The EnKF is advantageous in that balance in the error covariances relies only on a balanced forecast ensemble, and that the analysis step is an ensemble-mean operation. Numerical experiments show that the EnKF may be preferable to the EKF in terms of balance, though its validity is limited by ensemble size. It is also found that overobserving can lead to a more unbalanced forecast ensemble and thus to an unbalanced analysis.
Resumo:
Data assimilation (DA) systems are evolving to meet the demands of convection-permitting models in the field of weather forecasting. On 19 April 2013 a special interest group meeting of the Royal Meteorological Society brought together UK researchers looking at different aspects of the data assimilation problem at high resolution, from theory to applications, and researchers creating our future high resolution observational networks. The meeting was chaired by Dr Sarah Dance of the University of Reading and Dr Cristina Charlton-Perez from the MetOffice@Reading. The purpose of the meeting was to help define the current state of high resolution data assimilation in the UK. The workshop assembled three main types of scientists: observational network specialists, operational numerical weather prediction researchers and those developing the fundamental mathematical theory behind data assimilation and the underlying models. These three working areas are intrinsically linked; therefore, a holistic view must be taken when discussing the potential to make advances in high resolution data assimilation.
Resumo:
In general, particle filters need large numbers of model runs in order to avoid filter degeneracy in high-dimensional systems. The recently proposed, fully nonlinear equivalent-weights particle filter overcomes this requirement by replacing the standard model transition density with two different proposal transition densities. The first proposal density is used to relax all particles towards the high-probability regions of state space as defined by the observations. The crucial second proposal density is then used to ensure that the majority of particles have equivalent weights at observation time. Here, the performance of the scheme in a high, 65 500 dimensional, simplified ocean model is explored. The success of the equivalent-weights particle filter in matching the true model state is shown using the mean of just 32 particles in twin experiments. It is of particular significance that this remains true even as the number and spatial variability of the observations are changed. The results from rank histograms are less easy to interpret and can be influenced considerably by the parameter values used. This article also explores the sensitivity of the performance of the scheme to the chosen parameter values and the effect of using different model error parameters in the truth compared with the ensemble model runs.
Resumo:
Point placement strategies aim at mapping data points represented in higher dimensions to bi-dimensional spaces and are frequently used to visualize relationships amongst data instances. They have been valuable tools for analysis and exploration of data sets of various kinds. Many conventional techniques, however, do not behave well when the number of dimensions is high, such as in the case of documents collections. Later approaches handle that shortcoming, but may cause too much clutter to allow flexible exploration to take place. In this work we present a novel hierarchical point placement technique that is capable of dealing with these problems. While good grouping and separation of data with high similarity is maintained without increasing computation cost, its hierarchical structure lends itself both to exploration in various levels of detail and to handling data in subsets, improving analysis capability and also allowing manipulation of larger data sets.
Resumo:
We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.
Resumo:
Wider economic benefits resulting from extended geographical mobility is one argument for investments in high-speed rail. More specifically, the argument for high-speed trains in Sweden has been that they can help to further spatially extend labor market regions which in turn has a positive effect on growth and development. In this paper the aim is to cartographically visualize the potential size of the labor markets in areas that could be affected by possible future high-speed trains. The visualization is based on the forecasts of labor mobility with public transport made by the Swedish national mobility transport forecasting tool, SAMPERS, for two alternative high-speed rail scenarios. The analysis, not surprisingly, suggests that the largest impact of high-speed trains results in the area where the future high speed rail tracks are planned to be built. This expected effect on local labor market regions of high-speed trains could mean that possible regional economic development effects also are to be expected in this area. However, the results, in general, from the SAMPERS forecasts indicaterelatively small increases in local labor market potentials.
Resumo:
Traditional supervised data classification considers only physical features (e. g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.
Resumo:
La tesi descrive il sistema denominato GARTP che visualizza l'analisi dell'anticipo e del ritardo nel trasporto pubblico, su una mappa cartografica.