994 resultados para High-TiO2 basalts


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Basement rocks from the Ontong Java Plateau are tholeiitic basalts that appear to record very high degrees of partial melting, much like those found today in the vicinity of Iceland. They display a limited range of incompatible element and isotopic variation, but small differences are apparent between sampled sites and between upper and lower groups of flows at Ocean Drilling Program Site 807.40Ar-39Ar ages of lavas from Site 807 and Deep Sea Drilling Project Site 289 are indistinguishable about an early Aptian mean of 122 Ma (as are preliminary data for the island of Malaita at the southern edge of the plateau), indicating that plateau-building eruptions ended more or less simultaneously at widely separated locations. Pb-Nd-Sr isotopes for lavas from Sites 289, 803, and 807, as well as southern Malaita, reflect a hotspot-like source with epsilon-Nd(T) = +4.0 to +6.3, (87Sr/86Sr)T = 0.70423-0.70339, and 206Pb/204Pb = 18.245-18.709 and possessing consistently greater 208Pb/204Pb for a given 206Pb/204Pb than Pacific MORB. The combination of hotspot-like mantle source, very high degrees of melting, and lack of a discernible age progression is best explained if the bulk of the plateau was constructed rapidly above a surfacing plume head, possibly that of the Louisville hotspot. Basalt and feldspar separates indicate a substantially younger age of ~90 Ma for basement at Site 803; in addition, volcaniclastic layers of mid-Cenomanian through Coniacian age occur at DSDP Site 288, and beds of late Aptian-Albian age are found at Site 289. Therefore, at least some volcanism continued on the plateau for 30 m.y. or more. The basalts at Site 803 are chemically and isotopically very similar to those at the ~122 Ma sites, suggesting that hot plume-type mantle was present beneath the plateau for an extended period or at two different times. Surviving seamounts of the Louisville Ridge formed between 70 and 0 Ma have much higher 206Pb/204Pb than any of the plateau basalts. Thus, assuming the Louisville hotspot was the source of the plateau lavas, a change in the hotspot's isotopic composition may have occurred between roughly 70 and 90 Ma; such a change may have accompanied the plume-head to plume-tail transition. Similar shifts from early, lower 206Pb/204Pb to subsequently higher 206Pb/204Pb values are found in several other oceanic plateau-hotspot and continental flood basalt-hotspot systems, and could reflect either a reduction in the supply of low 206Pb/204Pb mantle or an inability of some off-ridge plume-tails to melt refractory low 206Pb/204Pb material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanostructured TiO2 photocatalysts with small crystalline sizes have been synthesized by sol-gel using the amphiphilic triblock copolymer Pluronic P123 as template. A new synthesis route, based on the treatment of TiO2 xerogels with acid-ethanol mixtures in two different steps, synthesis and extraction-crystallization, has been investigated, analyzing two acids, hydrochloric and hydriodic acid. As reference, samples have also been prepared by extraction-crystallization in ethanol, being these TiO2 materials amorphous and presenting higher porosities. The prepared materials present different degrees of crystallinity depending on the experimental conditions used. In general, these materials exhibit high surface areas, with an important contribution of microporosity and mesoporosity, and with very small size anatase crystals, ranging from 5 to 7 nm. The activity of the obtained photocatalysts has been assessed in the oxidation of propene in gas phase at low concentration (100 ppmv) under a UVA lamp with 365 nm wavelength. In the conditions studied, these photocatalysts show different activities in the oxidation of propene which do not depend on their surface areas, but on their crystallinity and band gap energies, being sample prepared with HCl both during synthesis and in extraction-crystallizations steps, the most active one, with superior performance than Evonik P25.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A detailed study of the Fe-Ti oxides in four basalt samples-one from each of the four holes drilled into basement on Ocean Drilling Program Leg 115 (Sites 706, 707, 713, and 715) has been performed. Ilmenite is present only in samples from Sites 706 and 715. In the sample from Site 715, Ti-magnetite intergrowths are characteristic of subaerial (?) high-temperature oxy-exsolution; Ti-magnetite in the other three samples has experienced pervasive low-temperature oxidation to Ti-maghemite, as evidenced by the double-humped, irreversible, saturation magnetization vs. temperature (Js/T) curves. The bulk susceptibility of these samples, which are similar in terms of major element chemistry, varies by a factor of ~20 and correlates semiquantitatively with the modal abundance of Fe-Ti spinel, as determined by image analysis with an electron microprobe. The variation in Fe-Ti oxide abundance correlates with average grain size: fine-grained samples contain less Fe-Ti oxide. This prompts the speculation that the crystallization rate may also influence Fe-Ti oxide abundance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New Sr- Nd- and Pb-isotopic and trace element data are presented on basalts from the Sulu and Celebes Basins, and the submerged Cagayan Ridge Arc (Western Pacific), recently sampled during Ocean Drilling Program Leg 124. Drilling has shown that the Sulu Basin developed about 18 Ma ago as a backarc basin, associated with the now submerged Cagayan Ridge Arc, whereas the Celebes Basin was generated about 43 Ma ago, contemporaneous with a general plate reorganisation in the Western Pacifc, subsequently developing as an open ocean receiving pelagic sediments until the middle Miocene. In both basins, a late middle Miocene collision phase and the onset of volcanic activity on adjacent arcs in the late Miocene are recorded. Covariations between 87Sr/86Sr and 143Nd/144Nd show that the seafoor basalts from both the Sulu and Celebes Basins are isotopically similar to depleted Indian mid-ocean ridge basalts (MORB), and distinct from East Pacifc Rise MORB, defining a single negative correlation. The Cagayan Arc volcanics are different, in that they have distinctly lower epsilon-Ne(T) for a given epsilon-Sr(T), compared to Sulu and Celebes basalts. In the 207Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, the Celebes, Sulu and Cagayan rocks all plot distinctly above the Northern Hemisphere Reference Line, with high Delta 7/4 Pb (5.3-9.3) and Delta 8/4 Pb (46.3-68.1) values. They define a single trend of radiogenic lead enrichment from Celebes through Sulu to Cagayan Ridge, within the Indian Ocean MORB data field. The data suggest that the overall chemical and isotopic features of the Sulu, Cagayan and Celebes rocks may be explained by partial melting of a depleted asthenospheric N-MORB-type ("normal") mantle source with isotopic characteristics similar to those of the Indian Ocean MORB source. This asthenospheric source was slightly heterogeneous, giving rise to the Sr-Nd isotopic differences between the Celebes and Sulu basalts, and the Cagayan Ridge volcanics. In addition, a probably slab-derived component enriched in LILE and LREE is required to generate the elemental characteristics and low Ne(T) of the Cagayan Ridge island arc tholeiitic and calcalkaline lavas, and to contribute to a small extent in the backarc basalts of the Sulu Sea. The results of this study confirm and extend the widespread Indian Ocean MORB signature in the Western Pacifc region. This signature could have been inherited by the Indian Ocean mantle itself during the rupture of Gondwanaland, when fragments of this mantle could have migrated towards the present position of the Celebes, Sulu and Cagayan sources.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The De Gerlache Seamounts are two topographic highs in the Bellingshausen Sea, southeastern Pacific. Petrological and geochemical studies together with K-Ar age determinations were carried out on four dredged basalt samples collected during a RV Polarstern expedition (ANT-XII/4) in 1995. Minor and trace element composition suggest alkaline basalt compositions. Compared to alkaline basalts of adjacent West Antarctica (the Jones Mountains) and of Peter I Island, the samples have lower mg-numbers, lower Ni and Cr contents and lower high field-strength elements (HFSE)/Nb and large-ion lithophile elements (LILE)/HFSE ratios. Three of the four samples have low K, Rb, and Cs concentrations relative to alkaline basalts. The K-depletion and other elemental concentrations may be explained by 1.1% melting of amphibole bearing mantle material. Additionally, low Rb and Ba values suggest low concentrations of these elements in the mantle source. K-Ar age determinations yield Miocene ages (20-23 Ma) that are similar in age to other alkaline basalts of West Antarctica (Thurston Island, the Jones Mountains, Antarctic Peninsula) and the suggested timing of onset of Peter I Island volcanism (~10-20 Ma). The occurrence of the DGS and Peter I Island volcanism along an older but reactivated tectonic lineation suggests that the extrusions exploited a zone of pre-existing lithospheric weakness. The alkaline nature and age of the DGS basalts support the assumption of plume activity in the Bellingshausen Sea.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Basement intersected in Holes 525A, 528, and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid- and lower NW flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge. The basalts were erupted approximately 70 Ma, a date consistent with formation at the paleo mid-ocean ridge. The basalt types vary from aphyric quartz tholeiites on the Ridge crest to highly Plagioclase phyric olivine tholeiites on the flank. These show systematic differences in incompatible trace element and isotopic composition, and many element and isotope ratio pairs form systematic trends with the Ridge crest basalts at one end and the highly phyric Ridge flank basalts at the other. The low 143Nd/144Nd (0.51238) and high 87Sr/86Sr (0.70512) ratios of the Ridge crest basalts suggest derivation from an old Nd/Sm and Rb/Sr enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan da Cunha but offset by somewhat lower 143Nd/144Nd values. The isotopic ratio trends may be extrapolated beyond the Ridge flank basalts (which have 143Nd/144Nd of 0.51270 and 87Sr/86Sr of 0.70417) in the direction of typical MORB compositions. These isotopic correlations are equally consistent with mixing of depleted and enriched end-member melts or partial melting of an inhomogeneous, variably enriched mantle source. However, observed Zr-Ba-Nb-Y interelement relationships are inconsistent with any simple two-component model of magma mixing or partial melting. They also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources in the petrogenesis of Walvis Ridge basalts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objective of Leg 82 of the Glomar Challenger was to document mantle heterogeneity in the vicinity of, and away from, a so-called hot spot: the Azores Triple Junction. One of the geochemical tools that permits, at least in part, the recognition of mantle heterogeneities uses hygromagmaphile elements, those elements that have an affinity for the liquid. This tool is presented in terms of an extended Coryell-Masuda plot, which incorporates within the rare earth elements the hygromagmaphile transition elements Th, Ta, Zr, Hf, Ti, Y, and V. The extended Coryell-Masuda plot is used to summarize our knowledge of mantle heterogeneity along the ridge axis at zero-age. It is also used by choosing those hygromagmaphile elements that can be analyzed on board by X-ray fluorescence spectrometry to give preliminary information on the enriched or depleted character of recovered samples. Shore-based results, which include analyses of most of the hygromagmaphile elements measured either by X-ray spectrometry or neutron activation analysis, confirm the shipboard data. From the point of view of comparative geochemistry, the variety of basalts recovered during Leg 82 provides a good opportunity to test and verify the classification of the hygromagmaphile elements. Analyses from Leg 82 provide new data about the relationship between extended rare earth patterns (enriched or depleted) that can be estimated either by La/Sm ratio or Nb/Zr (or Ta/Hf) ratios: samples from Hole 556 are depleted (low Nb/Zr ratio) but have a high 206Pb/ 204Pb (19.5) ratio; in Hole 558 a moderately enriched basalt unit with a La/Sm (= Nb/Zr) ratio (chondrite normalized) of 2 has a high 206Pb/204Pb (20) ratio. One of the most interesting results of Leg 82 lies in the crossing patterns of extended Coryell-Masuda plots for basalts from the same hole. This result enhances the notion of local mantle heterogeneity versus regional mantle heterogeneity and is confirmed by isotope data; it also favors a model of short-lived, discrete magma chambers. The data tend to confirm the Hayes Fracture Zone as a southern limit for the influence of Azores-type mantle. Nevertheless, north of the Hayes Fracture Zone, the influence of a plumelike mantle source is not simple and probably requires an explanation more complex than a contribution from a single fixed hot spot.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oceanic flood basalts are poorly understood, short-term expressions of highly increased heat flux and mass flow within the convecting mantle. The uniqueness of the Caribbean Large Igneous Province (CLIP, 92-74 Ma) with respect to other Cretaceous oceanic plateaus is its extensive sub-aerial exposures, providing an excellent basis to investigate the temporal and compositional relationships within a starting plume head. We present major element, trace element and initial Sr-Nd-Pb isotope composition of 40 extrusive rocks from the Caribbean Plateau, including onland sections in Costa Rica, Colombia and Curaçao as well as DSDP Sites in the Central Caribbean. Even though the lavas were erupted over an area of ~3*10**6 km**2, the majority have strikingly uniform incompatible element patterns (La/Yb=0.96+/-0.16, n=64 out of 79 samples, 2sigma) and initial Nd-Pb isotopic compositions (e.g. 143Nd/144Ndin=0.51291+/-3, epsilon-Nd i=7.3+/-0.6, 206Pb/204Pbin=18.86+/-0.12, n=54 out of 66, 2sigma). Lavas with endmember compositions have only been sampled at the DSDP Sites, Gorgona Island (Colombia) and the 65-60 Ma accreted Quepos and Osa igneous complexes (Costa Rica) of the subsequent hotspot track. Despite the relatively uniform composition of most lavas, linear correlations exist between isotope ratios and between isotope and highly incompatible trace element ratios. The Sr-Nd-Pb isotope and trace element signatures of the chemically enriched lavas are compatible with derivation from recycled oceanic crust, while the depleted lavas are derived from a highly residual source. This source could represent either oceanic lithospheric mantle left after ocean crust formation or gabbros with interlayered ultramafic cumulates of the lower oceanic crust. High 3He/4He in olivines of enriched picrites at Quepos are ~12 times higher than the atmospheric ratio suggesting that the enriched component may have once resided in the lower mantle. Evaluation of the Sm-Nd and U-Pb isotope systematics on isochron diagrams suggests that the age of separation of enriched and depleted components from the depleted MORB source mantle could have been <=500 Ma before CLIP formation and interpreted to reflect the recycling time of the CLIP source. Mantle plume heads may provide a mechanism for transporting large volumes of possibly young recycled oceanic lithosphere residing in the lower mantle back into the shallow MORB source mantle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photocatalytic degradation of phenol in aqueous suspensions of TiO2 under different salt concentrations in an annular reactor has been investigated. In all cases, complete removal of phenol and mineralization degrees above 90% were achieved. The reactor operational parameters were optimized and its hydrodynamics characterized in order to couple mass balance equations with kinetic ones. The photodegradation of the organics followed a Langmuir-Hinshelwood-Hougen-Watson lumped kinetics. From GC/MS analyses, several intermediates formed during oxidation have been identified. The main ones were catechol, hydroquinone, and 3-phenyl-2-propenal, in this order. The formation of negligible concentrations of 4-chlorophenol was observed only in high salinity medium. Acute toxicity was determined by using Artemia sp. as the test organism, which indicated that intermediate products were all less toxic than phenol and a significant abatement of the overall toxicity was accomplished, regardless of the salt concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the development of nanoscience, the interest in electrochromism has increased and new assemblies of electrochromic materials at nanoscale leading to higher efficiencies and chromatic contrasts, low switching times and the possibility of color tuning have been developed. These advantages are reached due to the extensive surface area found in nanomaterials and the large amount of organic electrochromic molecules that can be easily attached onto inorganic nanoparticles, as TiO2 or SiO2. Moreover, the direct contact between electrolyte and nanomaterials produces high ionic transfer rates, leading to fast charge compensation, which is essential for high performance electrochromic electrodes. Recently, the layer-by-layer technique was presented as an interesting way to produce different architectures by the combination of both electrochromic nanoparticles and polymers. The present paper shows some of the newest insights into nanochromic science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of TiO2 samples with different anatase-to-rutile ratios was prepared by calcination, and the roles of the two crystallite phases of titanium(IV) oxide (TiO2) on the photocatalytic activity in oxidation of phenol in aqueous solution were studied. High dispersion of nanometer-sized anatase in the silica matrix and the possible bonding of Si-O-Ti in SiO2/TiO2 interface were found to stabilize the crystallite transformation from anatase to rutile. The temperature for this transformation was 1200 degrees C for the silica-titania (ST) sample, much higher than 700 degrees C for Degussa P25, a benchmarking photocatalyst. It is shown that samples with higher anatase-to-rutile ratios have higher activities for phenol degradation. However, the activity did not totally disappear after a complete crystallite transformation for P25 samples, indicating some activity of the rutile phase. Furthermore, the activity for the ST samples after calcination decreased significantly, even though the amount of anatase did not change much. The activity of the same samples with different anatase-to-rutile ratios is more related to the amount of the surface-adsorbed water and hydroxyl groups and surface area. The formation of rutile by calcination would reduce the surface-adsorbed water and hydroxyl groups and surface area, leading to the decrease in activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coating anatase TiO2 onto three different particle supports, activated carbon (AC), gamma -alumina (Al2O3) and silica gel (SiO2), by chemical vapor deposition (CVD) was studied. The effect of the CVD synthesis conditions on the loading rate of anatase TiO2 was investigated. It was found that introducing water vapor during CVD or adsorbing water before CVD was crucial to obtain anatase TiO2 on the surface of the particle supports. The evaporation temperature of precursor, deposition temperature in the reactor, flow rate of carrier gas, and the length of coating time were also important parameters to obtain more uniform and repeatable TiO2 coating. High inflow precursor concentration, high CVD reactor temperature and long coating time tended to cause block problem. Coating TiO2 onto small particles by CVD involved both chemical vapor deposition and particle deposition. It was believed that the latter was the reason for the block problem. In addition, the mechanism of CVD process in this study included two parts, pyrolysis and hydrolysis, and one of them was dominant in the CVD process under different synthesis route. Among the three types of materials, silica gel, with higher surface hydroxyl groups and macropore surface area, was found to be the most efficient support in terms of both anatase TiO2 coating and photocatalytic reaction. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermally stable composite nanostructures of titanium dioxide (anatase) and silicate nanoparticles were prepared from Laponite clay and a sol of titanium hydrate in the presence of poly(ethylene oxide) (PEO) surfactants. Laponite is a synthetic clay that readily disperses in water and exists as exfoliated silicate layers of about 1-nm thick in transparent dispersions of high pH. The acidic sol solution reacts with the clay platelets and leaches out most of the magnesium in the clay, while the sol particles hydrolyze further due to the high pH of the clay dispersion. As a result, larger precursors of TiO2 nanoparticles form and condense on the fragmentized pieces of the leached silicate. Introducing PEO surfactants into the synthesis can significantly increase the porosity and surface area of the composite solids. The TiO2 exists as anatase nanoparticles that are separated by silicate fragments and voids such that they are accessible to organic molecules. The size of the anatase particle can be tailored by manipulating the experimental parameters at various synthesis stages. Therefore, we can design and engineer composite nanostructures to achieve better performance. The composite solids exhibit superior properties as photocatalysts for the degradation of Rhodamine 6G in aqueous solution.