872 resultados para High-Performance Computing
Resumo:
A new high performance architecture for the computation of all the DCT operations adopted in the H.264/AVC and HEVC standards is proposed in this paper. Contrasting to other dedicated transform cores, the presented multi-standard transform architecture is supported on a completely configurable, scalable and unified structure, that is able to compute not only the forward and the inverse 8×8 and 4×4 integer DCTs and the 4×4 and 2×2 Hadamard transforms defined in the H.264/AVC standard, but also the 4×4, 8×8, 16×16 and 32×32 integer transforms adopted in HEVC. Experimental results obtained using a Xilinx Virtex-7 FPGA demonstrated the superior performance and hardware efficiency levels provided by the proposed structure, which outperforms its more prominent related designs by at least 1.8 times. When integrated in a multi-core embedded system, this architecture allows the computation, in real-time, of all the transforms mentioned above for resolutions as high as the 8k Ultra High Definition Television (UHDTV) (7680×4320 @ 30fps).
Resumo:
This paper summarises the most important solutions that have emerged from the work carried out by our team within the framework of the EU (IST-1999-11316) project RFieldbus - High Performance Wireless Fieldbus in Industrial Multimedia-Related Environment. Within this project, Profibus was chosen as the fieldbus platform. Essentially, extensions to the current Profibus standard are being developed in order to provide Profibus with wireless, mobility and industrialmultimedia capabilities. In fact, providing these extensions means fulfilling strong requirements, namely to encompass the communication between wired (currently available) and wireless/mobile devices and to support real-time control traffic and multimedia traffic in the same network.
Resumo:
A unified architecture for fast and efficient computation of the set of two-dimensional (2-D) transforms adopted by the most recent state-of-the-art digital video standards is presented in this paper. Contrasting to other designs with similar functionality, the presented architecture is supported on a scalable, modular and completely configurable processing structure. This flexible structure not only allows to easily reconfigure the architecture to support different transform kernels, but it also permits its resizing to efficiently support transforms of different orders (e. g. order-4, order-8, order-16 and order-32). Consequently, not only is it highly suitable to realize high-performance multi-standard transform cores, but it also offers highly efficient implementations of specialized processing structures addressing only a reduced subset of transforms that are used by a specific video standard. The experimental results that were obtained by prototyping several configurations of this processing structure in a Xilinx Virtex-7 FPGA show the superior performance and hardware efficiency levels provided by the proposed unified architecture for the implementation of transform cores for the Advanced Video Coding (AVC), Audio Video coding Standard (AVS), VC-1 and High Efficiency Video Coding (HEVC) standards. In addition, such results also demonstrate the ability of this processing structure to realize multi-standard transform cores supporting all the standards mentioned above and that are capable of processing the 8k Ultra High Definition Television (UHDTV) video format (7,680 x 4,320 at 30 fps) in real time.
Resumo:
IEEE Electron Device Letters, VOL. 29, NO. 9,
Resumo:
Presented at Faculdade de Ciências e Tecnologias, Universidade de Lisboa, to obtain the Master Degree in Conservation and Restoration of Textiles
Resumo:
INTRODUCTION: Peak and trough serum concentrations of vancomycin were determined in term newborn infants with confirmed or suspected Staphylococcus sp sepsis by high performance liquid chromatography and flourescence polarization immunoassay. OBJECTIVE: To statistically compare the results of the high performance liquid chromatography and flourescence polarization immunoassay techniques for measuring serum vancomycin concentrations. METHODS: Eighteen peak and 20 trough serum samples were assayed for vancomycin concentrations using high performance liquid chromatography and flourescence polarization immunoassay from October 1995 to October 1997. RESULTS: The linear correlation coefficients for high performance liquid chromatography and flourescence polarization immunoassay were 0.27 (peak, P = 0.110) and 0.26 (trough, P = 0.1045) respectively, which were not statistically significant. CONCLUSION: There was wide variation in serum vancomycin concentrations determined by high performance liquid chromatography as compared with those determined by flourescence polarization immunoassay. There was no recognizable pattern in the variability; in an apparently random fashion, the high performance liquid chromatography measurement was sometimes substantially higher than the flourescence polarization immunoassay measurement, and at other times it was substantially lower.
Resumo:
High performance fiber reinforced concrete (HPFRC) is developing rapidly to a modern structural material with unique rheological and mechanical characteristics. Despite applying several methodologies to achieve self15 compacting requirements, some doubts still remain regarding the most convenient strategy for developing a HPFRC. In the present study, an innovative mix design method is proposed for the development of high17 performance concrete reinforced with a relatively high dosage of steel fibers. The material properties of the developed concrete are assessed, and the concrete structural behavior is characterized under compressive, flexural and shear loading. This study better clarifies the significant contribution of fibers for shear resistance of concrete elements. This paper further discusses a FEM-based simulation, aiming to address the possibility of calibrating the constitutive model parameters related to fracture modes I and II.
Resumo:
Due to the increasing need of low voltage actuators, independent from electrochemical processes, electroactive actuators based on poly(vinylidene fluoride) composites with 10, 25 and 40 % of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim] [NTf2], ionic liquid are prepared by solvent casting and melting. We show that the charge structure of [C2mim] [NTf2] induces the complete piezoelectric -phase crystallization of the PVDF within the composite and decreases its crystallinity fraction significantly. [C2mim] [NTf2] also works as a plasticizer of PVDF, reducing the elastic modulus down to 12 % of the initial value. Moreover, the composites show significant displacement and bending under applied voltages of 2, 5 and 10 Vpp. The displacement and bending of the composite membranes are also evaluated as a function of [C2mim] [NTf2] content and sample thickness. Increasing amounts of ionic liquid result in larger deformations independently of the applied voltage.
Resumo:
Scientific and technological advancements in the area of fibrous and textile materials have greatly enhanced their application potential in several high-end technical and industrial sectors including construction, transportation, medical, sports, aerospace engineering, electronics and so on. Excellent performance accompanied by light-weight, mechanical flexibility, tailor-ability, design flexibility, easy fabrication and relatively lower cost are the driving forces towards wide applications of these materials. Cost-effective fabrication of various advanced and functional materials for structural parts, medical devices, sensors, energy harvesting devices, capacitors, batteries, and many others has been possible using fibrous and textile materials. Structural membranes are one of the innovative applications of textile structures and these novel building skins are becoming very popular due to flexible design aesthetics, durability, lightweight and cost benefits. Current demand on high performance and multi-functional materials in structural applications has motivated to go beyond the basic textile structures used for structural membranes and to use innovative textile materials. Structural membranes with self-cleaning, thermoregulation and energy harvesting capability (using solar cells) are examples of such recently developed multi-functional membranes. Besides these, there exist enormous opportunities to develop wide varieties of multi-functional membranes using functional textile materials. Additionally, it is also possible to further enhance the performance and functionalities of structural membranes using advanced fibrous architectures such as 2D, 3D, hybrid, multi-layer and so on. In this context, the present paper gives an overview of various advanced and functional fibrous and textile materials which have enormous application potential in structural membranes.
Resumo:
High performance concrete (HPC) offers several advantages over normal-strength concrete, namely, high mechanical strength and high durability. Therefore, HPC allows for concrete structures with less steel reinforcement and a longer service life, both of which are crucial issues in the eco-efficiency of construction materials. Nevertheless international publications on the field of concrete containing nanoparticles are scarce when compared to Portland cement concrete (around 1%) of the total international publications. HPC nanoparticle-based publications are even scarcer. This article presents the results of an experimental investigation on the mechanical properties and durability of HPC based on nano-TiO2 and fly ash. The durability performance was assessed by means of water absorption by immersion, water absorption by capillarity, ultrasonic pulse velocity, electric resistivity, chloride diffusion and resistance to sulphuric acid attack. The results show that the concretes containing an increased content of nano-TiO2 show decreased durability performance. The results also show that concrete with 1% nano-TiO2 and 30% fly ash as Portland cement replacement show a high mechanical strength (C55/C67) and a high durability. However, it should be noted that the cost of nano-TiO2 is responsible for a severe increase in the cost of concrete mixtures.
Resumo:
Lithium-ion battery cathodes have been fabricated by screen-printing through the development of CLiFePO4 inks. It is shown that shear thinning polymer solutions in N-methyl-2-pyrrolidone (NMP) with Newtonian viscosity above 0.4 Pa s are the best binders for formulating a cathode paste with satisfactory film forming properties. The paste shows an elasticity of the order of 500 Pa and, after shear yielding, shows an apparent viscosity of the order of 3 Pa s for shear rates corresponding to those used during screen-printing. The screen-printed cathode produced with a thickness of 26 mm shows a homogeneous distribution of the active material, conductive additive and polymer binder. The total resistance and diffusion coefficient of the cathode are 450 V and 2.5 10 16cm2 s 1, respectively. The developed cathodes show an initial discharge capacity of 48.2 mAh g 1 at 5C and a discharge value of 39.8 mAh g 1 after 50 cycles. The capacity retention of 83% represents 23% of the theoretical value (charge and/or discharge process in twenty minutes), demonstrating the good performance of the battery. Thus, the developed C-LiFePO4 based inks allow to fabricate screen-printed cathodes suitable for printed lithium-ion batteries
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2010
Resumo:
The potential and applicability of UHPSFC-MS/MS for anti-doping screening in urine samples were tested for the first time. For this purpose, a group of 110 doping agents with diverse physicochemical properties was analyzed using two separation techniques, namely UHPLC-MS/MS and UHPSFC-MS/MS in both ESI+ and ESI- modes. The two approaches were compared in terms of selectivity, sensitivity, linearity and matrix effects. As expected, very diverse retentions and selectivities were obtained in UHPLC and UHPSFC, proving a good complementarity of these analytical strategies. In both conditions, acceptable peak shapes and MS detection capabilities were obtained within 7min analysis time, enabling the application of these two methods for screening purposes. Method sensitivity was found comparable for 46% of tested compounds, while higher sensitivity was observed for 21% of tested compounds in UHPLC-MS/MS and for 32% in UHPSFC-MS/MS. The latter demonstrated a lower susceptibility to matrix effects, which were mostly observed as signal suppression. In the case of UHPLC-MS/MS, more serious matrix effects were observed, leading typically to signal enhancement and the matrix effect was also concentration dependent, i.e., more significant matrix effects occurred at the lowest concentrations.