895 resultados para Hierarchical task analysis
Resumo:
The supervised pattern recognition methods K-Nearest Neighbors (KNN), stepwise discriminant analysis (SDA), and soft independent modelling of class analogy (SIMCA) were employed in this work with the aim to investigate the relationship between the molecular structure of 27 cannabinoid compounds and their analgesic activity. Previous analyses using two unsupervised pattern recognition methods (PCA-principal component analysis and HCA-hierarchical cluster analysis) were performed and five descriptors were selected as the most relevants for the analgesic activity of the compounds studied: R (3) (charge density on substituent at position C(3)), Q (1) (charge on atom C(1)), A (surface area), log P (logarithm of the partition coefficient) and MR (molecular refractivity). The supervised pattern recognition methods (SDA, KNN, and SIMCA) were employed in order to construct a reliable model that can be able to predict the analgesic activity of new cannabinoid compounds and to validate our previous study. The results obtained using the SDA, KNN, and SIMCA methods agree perfectly with our previous model. Comparing the SDA, KNN, and SIMCA results with the PCA and HCA ones we could notice that all multivariate statistical methods classified the cannabinoid compounds studied in three groups exactly in the same way: active, moderately active, and inactive.
Resumo:
A set of five tasks was designed to examine dynamic aspects of visual attention: selective attention to color, selective attention to pattern, dividing and switching attention between color and pattern, and selective attention to pattern with changing target. These varieties of visual attention were examined using the same set of stimuli under different instruction sets; thus differences between tasks cannot be attributed to differences in the perceptual features of the stimuli. ERP data are presented for each of these tasks. A within-task analysis of different stimulus types varying in similarity to the attended target feature revealed that an early frontal selection positivity (FSP) was evident in selective attention tasks, regardless of whether color was the attended feature. The scalp distribution of a later posterior selection negativity (SN) was affected by whether the attended feature was color or pattern. The SN was largely unaffected by dividing attention across color and pattern. A large widespread positivity was evident in most conditions, consisting of at least three subcomponents which were differentially affected by the attention conditions. These findings are discussed in relation to prior research and the time course of visual attention processes in the brain. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
This article is is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially, and although the new works must also acknowledge & be non-commercial.
Resumo:
3rd SMTDA Conference Proceedings, 11-14 June 2014, Lisbon, Portugal.
Resumo:
8th International Conference of Education, Research and Innovation. 18-20 November, 2015, Seville, Spain.
Resumo:
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Resumo:
Objectives - Identify radiographers’ postures during frequent mammography procedures related to the mammography equipment and patient characteristics. Methods - A postural task analysis was performed using images acquired during the simulation of mammography positioning procedures. Simulations included craniocaudal/(CC) and mediolateral-oblique/(MLO) positioning in three different settings: radiographers and patients with similar statures, radiographers smaller than the patients and radiographers taller than the patients. Measurements of postural angles were performed by two raters using adequate software and classified according to the European Standard EN1005-4:2005 + A1:2008. Results - The simulations revealed that the most awkward posture in mammography is during the positioning of MLO projection in short-stature patients. Postures identified as causing work-related musculoskeletal disorder (WRMSD) risk were neck extension, arms elevated and the back stooped, presenting angles of 87.2, 118.6 and 63.6, respectively. If radiographers were taller than patients, then the trunk and arm postures were not acceptable. Conclusions - Working in a mammography room leads to awkward postures that can have an impact on radiographers’ health, namely WRMSDs. The results in this study showed that there are non-acceptable postures associated with frequent working procedures in mammography. MLO is the most demanding procedure for radiographer postures and may be related to WRMSDs. Mammography devices should be redesigned considering adjustability for radiographers. Main Messages: • Mammography constraints for radiographers in mammography procedures have not been well studied. • Performing mammography leads to awkward postures that can impact radiographers’ health. • MLO, the most demanding procedure for radiographers, is possibly related to WRMSDs.
Resumo:
OBJECTIVE To analyze HIV/AIDS positive individual’s perception and attitudes regarding dental services.METHODS One hundred and thirty-four subjects (30.0% of women and 70.0% of men) from Nuevo León, Mexico, took part in the study (2014). They filled out structured, analytical, self-administered, anonymous questionnaires. Besides the sociodemographic variables, the perception regarding public and private dental services and related professionals was evaluated, as well as the perceived stigma associated with HIV/AIDS, through a Likert-type scale. The statistical evaluation included a factorial and a non-hierarchical cluster analysis.RESULTS Social inequalities were found regarding the search for public and private dental professionals and services. Most subjects reported omitting their HIV serodiagnosis and agreed that dentists must be trained and qualified to treat patients with HIV/AIDS. The factorial analysis revealed two elements: experiences of stigma and discrimination in dental appointments and feelings of concern regarding the attitudes of professionals or their teams concerning patients’ HIV serodiagnosis. The cluster analysis identified three groups: users who have not experienced stigma or discrimination (85.0%); the ones who have not had those experiences, but feel somewhat concerned (12.7%); and the ones who underwent stigma and discrimination and feel concerned (2.3%).CONCLUSIONS We observed a low percentage of stigma and discrimination in dental appointments; however, most HIV/AIDS patients do not reveal their serodiagnosis to dentists out of fear of being rejected. Such fact implies a workplace hazard to dental professionals, but especially to the very own health of HIV/AIDS patients, as dentists will not be able to provide them a proper clinical and pharmaceutical treatment.
Resumo:
This study aims to analyze which determinants predict frailty in general and each frailty domain (physical, psychological, and social), considering the integral conceptual model of frailty, and particularly to examine the contribution of medication in this prediction. A cross-sectional study was designed using a non-probabilistic sample of 252 community-dwelling elderly from three Portuguese cities. Frailty and determinants of frailty were assessed with the Tilburg Frailty Indicator. The amount and type of different daily-consumed medication were also examined. Hierarchical regression analysis were conducted. The mean age of the participants was 79.2 years (±7.3), and most of them were women (75.8%), widowed (55.6%) and with a low educational level (0–4 years: 63.9%). In this study, determinants explained 46% of the variance of total frailty, and 39.8, 25.3, and 27.7% of physical, psychological, and social frailty respectively. Age, gender, income, death of a loved one in the past year, lifestyle, satisfaction with living environment and self-reported comorbidity predicted total frailty, while each frailty domain was associated with a different set of determinants. The number of daily-consumed drugs was independently associated with physical frailty, and the consumption of medication for the cardiovascular system and for the blood and blood-forming organs explained part of the variance of total and physical frailty. The adverse effects of polymedication and its direct link with the level of comorbidities could explain the independent contribution of the amount of prescribed drugs to frailty prediction. On the other hand, findings in regard to medication type provide further evidence of the association of frailty with cardiovascular risk. In the present study, a significant part of frailty was predicted, and the different contributions of each determinant to frailty domains highlight the relevance of the integral model of frailty. The added value of a simple assessment of medication was considerable, and it should be taken into account for effective identification of frailty.
Resumo:
Pentachlorophenol (PCP) bioremediation by the fungal strains amongst the cork- colonising community has not yet been analysed. In this paper, the co- and direct metabolism of PCP by each of the 17 fungal species selected from this community were studied. Using hierarchical data analysis, the isolates were ranked by their PCP bioremediation potential. Fifteen isolates were able to degrade PCP under co-metabolic conditions, and surprisingly Chrysonilia sitophila, Trichoderma longibrachiatum, Mucor plumbeus, Penicillium janczewskii and P. glandicola were able to directly metabolise PCP, leading to its complete depletion from media. PCP degradation intermediates are preliminarily discussed. Data emphasise the signiWcance of these fungi to have an interesting potential to be used in PCP bioremediation processes.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.
Resumo:
BACKGROUND: Adequate pain assessment is critical for evaluating the efficacy of analgesic treatment in clinical practice and during the development of new therapies. Yet the currently used scores of global pain intensity fail to reflect the diversity of pain manifestations and the complexity of underlying biological mechanisms. We have developed a tool for a standardized assessment of pain-related symptoms and signs that differentiates pain phenotypes independent of etiology. METHODS AND FINDINGS: Using a structured interview (16 questions) and a standardized bedside examination (23 tests), we prospectively assessed symptoms and signs in 130 patients with peripheral neuropathic pain caused by diabetic polyneuropathy, postherpetic neuralgia, or radicular low back pain (LBP), and in 57 patients with non-neuropathic (axial) LBP. A hierarchical cluster analysis revealed distinct association patterns of symptoms and signs (pain subtypes) that characterized six subgroups of patients with neuropathic pain and two subgroups of patients with non-neuropathic pain. Using a classification tree analysis, we identified the most discriminatory assessment items for the identification of pain subtypes. We combined these six interview questions and ten physical tests in a pain assessment tool that we named Standardized Evaluation of Pain (StEP). We validated StEP for the distinction between radicular and axial LBP in an independent group of 137 patients. StEP identified patients with radicular pain with high sensitivity (92%; 95% confidence interval [CI] 83%-97%) and specificity (97%; 95% CI 89%-100%). The diagnostic accuracy of StEP exceeded that of a dedicated screening tool for neuropathic pain and spinal magnetic resonance imaging. In addition, we were able to reproduce subtypes of radicular and axial LBP, underscoring the utility of StEP for discerning distinct constellations of symptoms and signs. CONCLUSIONS: We present a novel method of identifying pain subtypes that we believe reflect underlying pain mechanisms. We demonstrate that this new approach to pain assessment helps separate radicular from axial back pain. Beyond diagnostic utility, a standardized differentiation of pain subtypes that is independent of disease etiology may offer a unique opportunity to improve targeted analgesic treatment.
Resumo:
Lipids available in fingermark residue represent important targets for enhancement and dating techniques. While it is well known that lipid composition varies among fingermarks of the same donor (intra-variability) and between fingermarks of different donors (inter-variability), the extent of this variability remains uncharacterised. Thus, this worked aimed at studying qualitatively and quantitatively the initial lipid composition of fingermark residue of 25 different donors. Among the 104 detected lipids, 43 were reported for the first time in the literature. Furthermore, palmitic acid, squalene, cholesterol, myristyl myristate and myristyl myristoleate were quantified and their correlation within fingermark residue was highlighted. Ten compounds were then selected and further studied as potential targets for dating or enhancement techniques. It was shown that their relative standard deviation was significantly lower for the intra-variability than for the inter-variability. Moreover, the use of data pretreatments could significantly reduce this variability. Based on these observations, an objective donor classification model was proposed. Hierarchical cluster analysis was conducted on the pre-treated data and the fingermarks of the 25 donors were classified into two main groups, corresponding to "poor" and "rich" lipid donors. The robustness of this classification was tested using fingermark replicates of selected donors. 86% of these replicates were correctly classified, showing the potential of such a donor classification model for research purposes in order to select representative donors based on compounds of interest.