878 resultados para Hierarchical Bayesian Metaanalysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms. Results: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model. Conclusions: We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses of ecological data should account for the uncertainty in the process(es) that generated the data. However, accounting for these uncertainties is a difficult task, since ecology is known for its complexity. Measurement and/or process errors are often the only sources of uncertainty modeled when addressing complex ecological problems, yet analyses should also account for uncertainty in sampling design, in model specification, in parameters governing the specified model, and in initial and boundary conditions. Only then can we be confident in the scientific inferences and forecasts made from an analysis. Probability and statistics provide a framework that accounts for multiple sources of uncertainty. Given the complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian) in the literature illustrating the benefits of this approach. In this article, we provide a baseline for concepts, notation, and methods, from which discussion on hierarchical statistical modeling in ecology can proceed. We have also planted some seeds for discussion and tried to show where the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties, even if practical issues sometimes require pragmatic compromises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental computer models are deterministic models devoted to predict several environmental phenomena such as air pollution or meteorological events. Numerical model output is given in terms of averages over grid cells, usually at high spatial and temporal resolution. However, these outputs are often biased with unknown calibration and not equipped with any information about the associated uncertainty. Conversely, data collected at monitoring stations is more accurate since they essentially provide the true levels. Due the leading role played by numerical models, it now important to compare model output with observations. Statistical methods developed to combine numerical model output and station data are usually referred to as data fusion. In this work, we first combine ozone monitoring data with ozone predictions from the Eta-CMAQ air quality model in order to forecast real-time current 8-hour average ozone level defined as the average of the previous four hours, current hour, and predictions for the next three hours. We propose a Bayesian downscaler model based on first differences with a flexible coefficient structure and an efficient computational strategy to fit model parameters. Model validation for the eastern United States shows consequential improvement of our fully inferential approach compared with the current real-time forecasting system. Furthermore, we consider the introduction of temperature data from a weather forecast model into the downscaler, showing improved real-time ozone predictions. Finally, we introduce a hierarchical model to obtain spatially varying uncertainty associated with numerical model output. We show how we can learn about such uncertainty through suitable stochastic data fusion modeling using some external validation data. We illustrate our Bayesian model by providing the uncertainty map associated with a temperature output over the northeastern United States.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medical errors originating in health care facilities are a significant source of preventable morbidity, mortality, and healthcare costs. Voluntary error report systems that collect information on the causes and contributing factors of medi- cal errors regardless of the resulting harm may be useful for developing effective harm prevention strategies. Some patient safety experts question the utility of data from errors that did not lead to harm to the patient, also called near misses. A near miss (a.k.a. close call) is an unplanned event that did not result in injury to the patient. Only a fortunate break in the chain of events prevented injury. We use data from a large voluntary reporting system of 836,174 medication errors from 1999 to 2005 to provide evidence that the causes and contributing factors of errors that result in harm are similar to the causes and contributing factors of near misses. We develop Bayesian hierarchical models for estimating the log odds of selecting a given cause (or contributing factor) of error given harm has occurred and the log odds of selecting the same cause given that harm did not occur. The posterior distribution of the correlation between these two vectors of log-odds is used as a measure of the evidence supporting the use of data from near misses and their causes and contributing factors to prevent medical errors. In addition, we identify the causes and contributing factors that have the highest or lowest log-odds ratio of harm versus no harm. These causes and contributing factors should also be a focus in the design of prevention strategies. This paper provides important evidence on the utility of data from near misses, which constitute the vast majority of errors in our data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The considerable search for synergistic agents in cancer research is motivated by the therapeutic benefits achieved by combining anti-cancer agents. Synergistic agents make it possible to reduce dosage while maintaining or enhancing a desired effect. Other favorable outcomes of synergistic agents include reduction in toxicity and minimizing or delaying drug resistance. Dose-response assessment and drug-drug interaction analysis play an important part in the drug discovery process, however analysis are often poorly done. This dissertation is an effort to notably improve dose-response assessment and drug-drug interaction analysis. The most commonly used method in published analysis is the Median-Effect Principle/Combination Index method (Chou and Talalay, 1984). The Median-Effect Principle/Combination Index method leads to inefficiency by ignoring important sources of variation inherent in dose-response data and discarding data points that do not fit the Median-Effect Principle. Previous work has shown that the conventional method yields a high rate of false positives (Boik, Boik, Newman, 2008; Hennessey, Rosner, Bast, Chen, 2010) and, in some cases, low power to detect synergy. There is a great need for improving the current methodology. We developed a Bayesian framework for dose-response modeling and drug-drug interaction analysis. First, we developed a hierarchical meta-regression dose-response model that accounts for various sources of variation and uncertainty and allows one to incorporate knowledge from prior studies into the current analysis, thus offering a more efficient and reliable inference. Second, in the case that parametric dose-response models do not fit the data, we developed a practical and flexible nonparametric regression method for meta-analysis of independently repeated dose-response experiments. Third, and lastly, we developed a method, based on Loewe additivity that allows one to quantitatively assess interaction between two agents combined at a fixed dose ratio. The proposed method makes a comprehensive and honest account of uncertainty within drug interaction assessment. Extensive simulation studies show that the novel methodology improves the screening process of effective/synergistic agents and reduces the incidence of type I error. We consider an ovarian cancer cell line study that investigates the combined effect of DNA methylation inhibitors and histone deacetylation inhibitors in human ovarian cancer cell lines. The hypothesis is that the combination of DNA methylation inhibitors and histone deacetylation inhibitors will enhance antiproliferative activity in human ovarian cancer cell lines compared to treatment with each inhibitor alone. By applying the proposed Bayesian methodology, in vitro synergy was declared for DNA methylation inhibitor, 5-AZA-2'-deoxycytidine combined with one histone deacetylation inhibitor, suberoylanilide hydroxamic acid or trichostatin A in the cell lines HEY and SKOV3. This suggests potential new epigenetic therapies in cell growth inhibition of ovarian cancer cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Although protocol registration for systematic reviews is still not mandatory, reviewers should be strongly encouraged to register the protocol to identify the methodological approach, including all outcomes of interest. This will minimize the likelihood of biased decisions in reviews, such as selective outcome reporting. A group of international experts convened to address issues regarding the need to develop hierarchical lists of outcome measurement instruments for a particular outcome for metaanalyses. METHODS Multiple outcome measurement instruments exist to measure the same outcome. Metaanalysis of knee osteoarthritis (OA) trials, and the assessment of pain as an outcome, was used as an exemplar to assess how Outcome Measures in Rheumatology (OMERACT), the Cochrane Collaboration, and other international initiatives might contribute in this area. The meeting began with formal presentations of background topics, empirical evidence from the literature, and a brief introduction to 2 existing hierarchical lists of pain outcome measurement instruments recommended for metaanalyses of knee OA trials. RESULTS After discussions, most participants agreed that there is a need to develop a methodology for generation of hierarchical lists of outcome measurement instruments to guide metaanalyses. Tools that could be used to steer development of such a prioritized list are the COSMIN checklist (Consensus-based Standards for the selection of health status Measurement Instruments) and the OMERACT Filter 2.0. CONCLUSION We list meta-epidemiological research agenda items that address the frequency of reported outcomes in trials, as well as methodologies to assess the best measurement properties (i.e., truth, discrimination, and feasibility).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many public health agencies and researchers are interested in comparing hospital outcomes, for example, morbidity, mortality, and hospitalization across areas and hospitals. However, since there is variation of rates in clinical trials among hospitals because of several biases, we are interested in controlling for the bias and assessing real differences in clinical practices. In this study, we compared the variations between hospitals in rates of severe Intraventricular Haemorrhage (IVH) infant using Frequentist statistical approach vs. Bayesian hierarchical model through simulation study. The template data set for simulation study was included the number of severe IVH infants of 24 intensive care units in Australian and New Zealand Neonatal Network from 1995 to 1997 in severe IVH rate in preterm babies. We evaluated the rates of severe IVH for 24 hospitals with two hierarchical models in Bayesian approach comparing their performances with the shrunken rates in Frequentist method. Gamma-Poisson (BGP) and Beta-Binomial (BBB) were introduced into Bayesian model and the shrunken estimator of Gamma-Poisson (FGP) hierarchical model using maximum likelihood method were calculated as Frequentist approach. To simulate data, the total number of infants in each hospital was kept and we analyzed the simulated data for both Bayesian and Frequentist models with two true parameters for severe IVH rate. One was the observed rate and the other was the expected severe IVH rate by adjusting for five predictors variables for the template data. The bias in the rate of severe IVH infant estimated by both models showed that Bayesian models gave less variable estimates than Frequentist model. We also discussed and compared the results from three models to examine the variation in rate of severe IVH by 20th centile rates and avoidable number of severe IVH cases. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper estimates the impact of industrial agglomeration on firm-level productivity in Chinese manufacturing sectors. To account for spatial autocorrelation across regions, we formulate a hierarchical spatial model at the firm level and develop a Bayesian estimation algorithm. A Bayesian instrumental-variables approach is used to address endogeneity bias of agglomeration. Robust to these potential biases, we find that agglomeration of the same industry (i.e. localization) has a productivity-boosting effect, but agglomeration of urban population (i.e. urbanization) has no such effects. Additionally, the localization effects increase with educational levels of employees and the share of intermediate inputs in gross output. These results may suggest that agglomeration externalities occur through knowledge spillovers and input sharing among firms producing similar manufactures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies on birds focus on the collection of data through an experimental design, suitable for investigation in a classical analysis of variance (ANOVA) framework. Although many findings are confirmed by one or more experts, expert information is rarely used in conjunction with the survey data to enhance the explanatory and predictive power of the model. We explore this neglected aspect of ecological modelling through a study on Australian woodland birds, focusing on the potential impact of different intensities of commercial cattle grazing on bird density in woodland habitat. We examine a number of Bayesian hierarchical random effects models, which cater for overdispersion and a high frequency of zeros in the data using WinBUGS and explore the variation between and within different grazing regimes and species. The impact and value of expert information is investigated through the inclusion of priors that reflect the experience of 20 experts in the field of bird responses to disturbance. Results indicate that expert information moderates the survey data, especially in situations where there are little or no data. When experts agreed, credible intervals for predictions were tightened considerably. When experts failed to agree, results were similar to those evaluated in the absence of expert information. Overall, we found that without expert opinion our knowledge was quite weak. The fact that the survey data is quite consistent, in general, with expert opinion shows that we do know something about birds and grazing and we could learn a lot faster if we used this approach more in ecology, where data are scarce. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are concerned with the problem of image segmentation in which each pixel is assigned to one of a predefined finite number of classes. In Bayesian image analysis, this requires fusing together local predictions for the class labels with a prior model of segmentations. Markov Random Fields (MRFs) have been used to incorporate some of this prior knowledge, but this not entirely satisfactory as inference in MRFs is NP-hard. The multiscale quadtree model of Bouman and Shapiro (1994) is an attractive alternative, as this is a tree-structured belief network in which inference can be carried out in linear time (Pearl 1988). It is an hierarchical model where the bottom-level nodes are pixels, and higher levels correspond to downsampled versions of the image. The conditional-probability tables (CPTs) in the belief network encode the knowledge of how the levels interact. In this paper we discuss two methods of learning the CPTs given training data, using (a) maximum likelihood and the EM algorithm and (b) emphconditional maximum likelihood (CML). Segmentations obtained using networks trained by CML show a statistically-significant improvement in performance on synthetic images. We also demonstrate the methods on a real-world outdoor-scene segmentation task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work introduces a new variational Bayes data assimilation method for the stochastic estimation of precipitation dynamics using radar observations for short term probabilistic forecasting (nowcasting). A previously developed spatial rainfall model based on the decomposition of the observed precipitation field using a basis function expansion captures the precipitation intensity from radar images as a set of ‘rain cells’. The prior distributions for the basis function parameters are carefully chosen to have a conjugate structure for the precipitation field model to allow a novel variational Bayes method to be applied to estimate the posterior distributions in closed form, based on solving an optimisation problem, in a spirit similar to 3D VAR analysis, but seeking approximations to the posterior distribution rather than simply the most probable state. A hierarchical Kalman filter is used to estimate the advection field based on the assimilated precipitation fields at two times. The model is applied to tracking precipitation dynamics in a realistic setting, using UK Met Office radar data from both a summer convective event and a winter frontal event. The performance of the model is assessed both traditionally and using probabilistic measures of fit based on ROC curves. The model is shown to provide very good assimilation characteristics, and promising forecast skill. Improvements to the forecasting scheme are discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Storyline detection from news articles aims at summarizing events described under a certain news topic and revealing how those events evolve over time. It is a difficult task because it requires first the detection of events from news articles published in different time periods and then the construction of storylines by linking events into coherent news stories. Moreover, each storyline has different hierarchical structures which are dependent across epochs. Existing approaches often ignore the dependency of hierarchical structures in storyline generation. In this paper, we propose an unsupervised Bayesian model, called dynamic storyline detection model, to extract structured representations and evolution patterns of storylines. The proposed model is evaluated on a large scale news corpus. Experimental results show that our proposed model outperforms several baseline approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Testing for differences within data sets is an important issue across various applications. Our work is primarily motivated by the analysis of microbiomial composition, which has been increasingly relevant and important with the rise of DNA sequencing. We first review classical frequentist tests that are commonly used in tackling such problems. We then propose a Bayesian Dirichlet-multinomial framework for modeling the metagenomic data and for testing underlying differences between the samples. A parametric Dirichlet-multinomial model uses an intuitive hierarchical structure that allows for flexibility in characterizing both the within-group variation and the cross-group difference and provides very interpretable parameters. A computational method for evaluating the marginal likelihoods under the null and alternative hypotheses is also given. Through simulations, we show that our Bayesian model performs competitively against frequentist counterparts. We illustrate the method through analyzing metagenomic applications using the Human Microbiome Project data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation contributes to the rapidly growing empirical research area in the field of operations management. It contains two essays, tackling two different sets of operations management questions which are motivated by and built on field data sets from two very different industries --- air cargo logistics and retailing.

The first essay, based on the data set obtained from a world leading third-party logistics company, develops a novel and general Bayesian hierarchical learning framework for estimating customers' spillover learning, that is, customers' learning about the quality of a service (or product) from their previous experiences with similar yet not identical services. We then apply our model to the data set to study how customers' experiences from shipping on a particular route affect their future decisions about shipping not only on that route, but also on other routes serviced by the same logistics company. We find that customers indeed borrow experiences from similar but different services to update their quality beliefs that determine future purchase decisions. Also, service quality beliefs have a significant impact on their future purchasing decisions. Moreover, customers are risk averse; they are averse to not only experience variability but also belief uncertainty (i.e., customer's uncertainty about their beliefs). Finally, belief uncertainty affects customers' utilities more compared to experience variability.

The second essay is based on a data set obtained from a large Chinese supermarket chain, which contains sales as well as both wholesale and retail prices of un-packaged perishable vegetables. Recognizing the special characteristics of this particularly product category, we develop a structural estimation model in a discrete-continuous choice model framework. Building on this framework, we then study an optimization model for joint pricing and inventory management strategies of multiple products, which aims at improving the company's profit from direct sales and at the same time reducing food waste and thus improving social welfare.

Collectively, the studies in this dissertation provide useful modeling ideas, decision tools, insights, and guidance for firms to utilize vast sales and operations data to devise more effective business strategies.