917 resultados para Hexarotor. Dynamic modeling. Robust backstepping control. EKF Attitude Estimation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the mathematical development of a body-centric nonlinear dynamic model of a quadrotor UAV that is suitable for the development of biologically inspired navigation strategies. Analytical approximations are used to find an initial guess of the parameters of the nonlinear model, then parameter estimation methods are used to refine the model parameters using the data obtained from onboard sensors during flight. Due to the unstable nature of the quadrotor model, the identification process is performed with the system in closed-loop control of attitude angles. The obtained model parameters are validated using real unseen experimental data. Based on the identified model, a Linear-Quadratic (LQ) optimal tracker is designed to stabilize the quadrotor and facilitate its translational control by tracking body accelerations. The LQ tracker is tested on an experimental quadrotor UAV and the obtained results are a further means to validate the quality of the estimated model. The unique formulation of the control problem in the body frame makes the controller better suited for bio-inspired navigation and guidance strategies than conventional attitude or position based control systems that can be found in the existing literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we introduce the concept of dynamic Morse decomposition for an action of a semigroup of homeomorphisms. Conley has shown in [5, Sec. 7] that the concepts of Morse decomposition and dynamic Morse decompositions are equivalent for flows in metric spaces. Here, we show that a Morse decomposition for an action of a semigroup of homeomorphisms of a compact topological space is a dynamic Morse decomposition. We also define Morse decompositions and dynamic Morse decompositions for control systems on manifolds. Under certain condition, we show that the concept of dynamic Morse decomposition for control system is equivalent to the concept of Morse decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile Mesh Network based In-Transit Visibility (MMN-ITV) system facilitates global real-time tracking capability for the logistics system. In-transit containers form a multi-hop mesh network to forward the tracking information to the nearby sinks, which further deliver the information to the remote control center via satellite. The fundamental challenge to the MMN-ITV system is the energy constraint of the battery-operated containers. Coupled with the unique mobility pattern, cross-MMN behavior, and the large-spanned area, it is necessary to investigate the energy-efficient communication of the MMN-ITV system thoroughly. First of all, this dissertation models the energy-efficient routing under the unique pattern of the cross-MMN behavior. A new modeling approach, pseudo-dynamic modeling approach, is proposed to measure the energy-efficiency of the routing methods in the presence of the cross-MMN behavior. With this approach, it could be identified that the shortest-path routing and the load-balanced routing is energy-efficient in mobile networks and static networks respectively. For the MMN-ITV system with both mobile and static MMNs, an energy-efficient routing method, energy-threshold routing, is proposed to achieve the best tradeoff between them. Secondly, due to the cross-MMN behavior, neighbor discovery is executed frequently to help the new containers join the MMN, hence, consumes similar amount of energy as that of the data communication. By exploiting the unique pattern of the cross-MMN behavior, this dissertation proposes energy-efficient neighbor discovery wakeup schedules to save up to 60% of the energy for neighbor discovery. Vehicular Ad Hoc Networks (VANETs)-based inter-vehicle communications is by now growingly believed to enhance traffic safety and transportation management with low cost. The end-to-end delay is critical for the time-sensitive safety applications in VANETs, and can be a decisive performance metric for VANETs. This dissertation presents a complete analytical model to evaluate the end-to-end delay against the transmission range and the packet arrival rate. This model illustrates a significant end-to-end delay increase from non-saturated networks to saturated networks. It hence suggests that the distributed power control and admission control protocols for VANETs should aim at improving the real-time capacity (the maximum packet generation rate without causing saturation), instead of the delay itself. Based on the above model, it could be determined that adopting uniform transmission range for every vehicle may hinder the delay performance improvement, since it does not allow the coexistence of the short path length and the low interference. Clusters are proposed to configure non-uniform transmission range for the vehicles. Analysis and simulation confirm that such configuration can enhance the real-time capacity. In addition, it provides an improved trade off between the end-to-end delay and the network capacity. A distributed clustering protocol with minimum message overhead is proposed, which achieves low convergence time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance temperature imaging (MRTI) is recognized as a noninvasive means to provide temperature imaging for guidance in thermal therapies. The most common method of estimating temperature changes in the body using MR is by measuring the water proton resonant frequency (PRF) shift. Calculation of the complex phase difference (CPD) is the method of choice for measuring the PRF indirectly since it facilitates temperature mapping with high spatiotemporal resolution. Chemical shift imaging (CSI) techniques can provide the PRF directly with high sensitivity to temperature changes while minimizing artifacts commonly seen in CPD techniques. However, CSI techniques are currently limited by poor spatiotemporal resolution. This research intends to develop and validate a CSI-based MRTI technique with intentional spectral undersampling which allows relaxed parameters to improve spatiotemporal resolution. An algorithm based on autoregressive moving average (ARMA) modeling is developed and validated to help overcome limitations of Fourier-based analysis allowing highly accurate and precise PRF estimates. From the determined acquisition parameters and ARMA modeling, robust maps of temperature using the k-means algorithm are generated and validated in laser treatments in ex vivo tissue. The use of non-PRF based measurements provided by the technique is also investigated to aid in the validation of thermal damage predicted by an Arrhenius rate dose model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multibody System Dynamics has been responsible for revolutionizing Mechanical Engineering Design by using mathematical models to simulate and optimize the dynamic behavior of a wide range of mechanical systems. These mathematical models not only can provide valuable informations about a system that could otherwise be obtained only by experiments with prototypes, but also have been responsible for the development of many model-based control systems. This work represents a contribution for dynamic modeling of multibody mechanical systems by developing a novel recursive modular methodology that unifies the main contributions of several Classical Mechanics formalisms. The reason for proposing such a methodology is to motivate the implementation of computational routines for modeling complex multibody mechanical systems without being dependent on closed source software and, consequently, to contribute for the teaching of Multibody System Dynamics in undergraduate and graduate levels. All the theoretical developments are based on and motivated by a critical literature review, leading to a general matrix form of the dynamic equations of motion of a multibody mechanical system (that can be expressed in terms of any set of variables adopted for the description of motions performed by the system, even if such a set includes redundant variables) and to a general recursive methodology for obtaining mathematical models of complex systems given a set of equations describing the dynamics of each of its uncoupled subsystems and another set describing the constraints among these subsystems in the assembled system. This work also includes some discussions on the description of motion (using any possible set of motion variables and admitting any kind of constraint that can be expressed by an invariant), and on the conditions for solving forward and inverse dynamics problems given a mathematical model of a multibody system. Finally, some examples of computational packages based on the novel methodology, along with some case studies, are presented, highlighting the contributions that can be achieved by using the proposed methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a novel inversion-based neuro-controller for solving control problems involving uncertain nonlinear systems that could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. In this work a novel robust inverse control approach is obtained based on importance sampling from these distributions. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The performance of the new algorithm is illustrated through simulations with example systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work introduces a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. Convergence of the output error for the proposed control method is verified by using a Lyapunov function. Several simulation examples are provided to demonstrate the efficiency of the developed control method. The manner in which such a method is extended to nonlinear multi-variable systems with different delays between the input-output pairs is considered and demonstrated through simulation examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main focus of this research is to design and develop a high performance linear actuator based on a four bar mechanism. The present work includes the detailed analysis (kinematics and dynamics), design, implementation and experimental validation of the newly designed actuator. High performance is characterized by the acceleration of the actuator end effector. The principle of the newly designed actuator is to network the four bar rhombus configuration (where some bars are extended to form an X shape) to attain high acceleration. Firstly, a detailed kinematic analysis of the actuator is presented and kinematic performance is evaluated through MATLAB simulations. A dynamic equation of the actuator is achieved by using the Lagrangian dynamic formulation. A SIMULINK control model of the actuator is developed using the dynamic equation. In addition, Bond Graph methodology is presented for the dynamic simulation. The Bond Graph model comprises individual component modeling of the actuator along with control. Required torque was simulated using the Bond Graph model. Results indicate that, high acceleration (around 20g) can be achieved with modest (3 N-m or less) torque input. A practical prototype of the actuator is designed using SOLIDWORKS and then produced to verify the proof of concept. The design goal was to achieve the peak acceleration of more than 10g at the middle point of the travel length, when the end effector travels the stroke length (around 1 m). The actuator is primarily designed to operate in standalone condition and later to use it in the 3RPR parallel robot. A DC motor is used to operate the actuator. A quadrature encoder is attached with the DC motor to control the end effector. The associated control scheme of the actuator is analyzed and integrated with the physical prototype. From standalone experimentation of the actuator, around 17g acceleration was achieved by the end effector (stroke length was 0.2m to 0.78m). Results indicate that the developed dynamic model results are in good agreement. Finally, a Design of Experiment (DOE) based statistical approach is also introduced to identify the parametric combination that yields the greatest performance. Data are collected by using the Bond Graph model. This approach is helpful in designing the actuator without much complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimating un-measurable states is an important component for onboard diagnostics (OBD) and control strategy development in diesel exhaust aftertreatment systems. This research focuses on the development of an Extended Kalman Filter (EKF) based state estimator for two of the main components in a diesel engine aftertreatment system: the Diesel Oxidation Catalyst (DOC) and the Selective Catalytic Reduction (SCR) catalyst. One of the key areas of interest is the performance of these estimators when the catalyzed particulate filter (CPF) is being actively regenerated. In this study, model reduction techniques were developed and used to develop reduced order models from the 1D models used to simulate the DOC and SCR. As a result of order reduction, the number of states in the estimator is reduced from 12 to 1 per element for the DOC and 12 to 2 per element for the SCR. The reduced order models were simulated on the experimental data and compared to the high fidelity model and the experimental data. The results show that the effect of eliminating the heat transfer and mass transfer coefficients are not significant on the performance of the reduced order models. This is shown by an insignificant change in the kinetic parameters between the reduced order and 1D model for simulating the experimental data. An EKF based estimator to estimate the internal states of the DOC and SCR was developed. The DOC and SCR estimators were simulated on the experimental data to show that the estimator provides improved estimation of states compared to a reduced order model. The results showed that using the temperature measurement at the DOC outlet improved the estimates of the CO , NO , NO2 and HC concentrations from the DOC. The SCR estimator was used to evaluate the effect of NH3 and NOX sensors on state estimation quality. Three sensor combinations of NOX sensor only, NH3 sensor only and both NOX and NH3 sensors were evaluated. The NOX only configuration had the worst performance, the NH3 sensor only configuration was in the middle and both the NOX and NH3 sensor combination provided the best performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis aims to illustrate the construction of a mathematical model of a hydraulic system, oriented to the design of a model predictive control (MPC) algorithm. The modeling procedure starts with the basic formulation of a piston-servovalve system. The latter is a complex non linear system with some unknown and not measurable effects that constitute a challenging problem for the modeling procedure. The first level of approximation for system parameters is obtained basing on datasheet informations, provided workbench tests and other data from the company. Then, to validate and refine the model, open-loop simulations have been made for data matching with the characteristics obtained from real acquisitions. The final developed set of ODEs captures all the main peculiarities of the system despite some characteristics due to highly varying and unknown hydraulic effects, like the unmodeled resistive elements of the pipes. After an accurate analysis, since the model presents many internal complexities, a simplified version is presented. The latter is used to linearize and discretize correctly the non linear model. Basing on that, a MPC algorithm for reference tracking with linear constraints is implemented. The results obtained show the potential of MPC in this kind of industrial applications, thus a high quality tracking performances while satisfying state and input constraints. The increased robustness and flexibility are evident with respect to the standard control techniques, such as PID controllers, adopted for these systems. The simulations for model validation and the controlled system have been carried out in a Python code environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The infection of insect cells with baculovirus was described in a mathematical model as a part of the structured dynamic model describing whole animal cell metabolism. The model presented here is capable of simulating cell population dynamics, the concentrations of extracellular and intracellular viral components, and the heterologous product titers. The model describes the whole processes of viral infection and the effect of the infection on the host cell metabolism. Dynamic simulation of the model in batch and fed-batch mode gave good agreement between model predictions and experimental data. Optimum conditions for insect cell culture and viral infection in batch and fed-batch culture were studied using the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of the increase in workplace automation and the diversification of industrial processes, workplaces have become more and more complex. The classical approaches used to address workplace hazard concerns, such as checklists or sequence models, are, therefore, of limited use in such complex systems. Moreover, because of the multifaceted nature of workplaces, the use of single-oriented methods, such as AEA (man oriented), FMEA (system oriented), or HAZOP (process oriented), is not satisfactory. The use of a dynamic modeling approach in order to allow multiple-oriented analyses may constitute an alternative to overcome this limitation. The qualitative modeling aspects of the MORM (man-machine occupational risk modeling) model are discussed in this article. The model, realized on an object-oriented Petri net tool (CO-OPN), has been developed to simulate and analyze industrial processes in an OH&S perspective. The industrial process is modeled as a set of interconnected subnets (state spaces), which describe its constitutive machines. Process-related factors are introduced, in an explicit way, through machine interconnections and flow properties. While man-machine interactions are modeled as triggering events for the state spaces of the machines, the CREAM cognitive behavior model is used in order to establish the relevant triggering events. In the CO-OPN formalism, the model is expressed as a set of interconnected CO-OPN objects defined over data types expressing the measure attached to the flow of entities transiting through the machines. Constraints on the measures assigned to these entities are used to determine the state changes in each machine. Interconnecting machines implies the composition of such flow and consequently the interconnection of the measure constraints. This is reflected by the construction of constraint enrichment hierarchies, which can be used for simulation and analysis optimization in a clear mathematical framework. The use of Petri nets to perform multiple-oriented analysis opens perspectives in the field of industrial risk management. It may significantly reduce the duration of the assessment process. But, most of all, it opens perspectives in the field of risk comparisons and integrated risk management. Moreover, because of the generic nature of the model and tool used, the same concepts and patterns may be used to model a wide range of systems and application fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A centralized robust position control for an electrical driven tooth belt drive is designed in this doctoral thesis. Both a cascaded control structure and a PID based position controller are discussed. The performance and the limitations of the system are analyzed and design principles for the mechanical structure and the control design are given. These design principles are also suitable for most of the motion control applications, where mechanical resonance frequencies and control loop delays are present. One of the major challenges in the design of a controller for machinery applications is that the values of the parameters in the system model (parameter uncertainty) or the system model it self (non-parametric uncertainty) are seldom known accurately in advance. In this thesis a systematic analysis of the parameter uncertainty of the linear tooth beltdrive model is presented and the effect of the variation of a single parameter on the performance of the total system is shown. The total variation of the model parameters is taken into account in the control design phase using a Quantitative Feedback Theory (QFT). The thesis also introduces a new method to analyze reference feedforward controllers applying the QFT. The performance of the designed controllers is verified by experimentalmeasurements. The measurements confirm the control design principles that are given in this thesis.