87 resultados para Hexágono de Anholt


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Um bloco de poliuretano recebeu três implantes de hexagono externo, no posicionamento compensado. Para cada implante foi conectado o pilar protético microunit. Foram realizados cinco enceramentos com três coifas plásticas cada um, que foram fundidos em monobloco numa liga de cobalto-cromo. Foram colados quatro extensomêtros tangenciando cada implante, sendo dois extensomêtros para o implante central. Após o acabamento, as estruturas foram fixadas nos respectivos locais com o parafuso de retenção com torque de 10 Ncm, obtidos com um torquímetro. Para aplicação de carga sobre os corpos-de-prova foram selecionados cinco pontos de aplicação de carga. O dispositivo de aplicação de carga–DAC foi utilizado 30 kg de cargas verticais estáticas, empregando uma ponta esférica de 2 mm de diamêtro, durante 10 segundos em cada um dos pontos estabelecidos, sendo, neste instante registradas as micro deformações de cada extensômetro. Foi utilizado o teste de análise de variância T Student e o nível de significância foi o valor convencional de 5%. Para cada implante foi analisada a microdeformação ocorrida. Os resultados obtidos mostraram que houve uma diferença estatisticamente significativa entre os pontos não-axiais D e E (t = 5,21 df = 4, p = 0,006 < 0,05) e não foi estatisticamente significativa para os dados axial entre os pontos B e C (t = 6, 57, df = 4, p = 0,003 < 0,05 / 3). Conclui-se que,a aplicação de carga ao redor de três implantes de hexágono externo no posicionamento compensado,mostra que os pontos não-axiais sofrem maior micro deformação do que os pontos axiais

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This in vitro study evaluated the effect of mechanical cycling on the torque of retaining screw in external hexagon implants with platform switching (PS), regular platform (RP) and wide platform (WP). A total of 30 specimens were equally divided into 3 groups: PS, PR and WP. Each specimen was prepared with implants: 3.75 x 10 mm for RP group and 5.0x10 mm for PS and WP groups and its respective abutment with 32 Ncm torque. All groups were subjected to 106 cycles with 100 N (corresponding to about 40 months of chewing). The results were obtained with the reverse torque of each specimen and data were evaluated using ANOVA and Tukey test (p<0.05). The PS group showed statistically significant difference in screw removal torque (30.06±5.42) compared with RP (23.75±2.76) and WP (21.32±3.53) (p<0.05) groups; the RP and WP groups showed no statistically significant difference between them. It was concluded that the PS group showed higher reverse torque value, suggesting lower susceptibility of the abutment screw loosening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In view of the low loading values commonly employed in dentistry, a load-application device (LAD) was developed as option to the universal testing machine (UTM), using strain gauge analysis. The aim of this study was to develop a load-application device (LAD) and compare the LAD with the UTM apparatus under axial and non-axial loads. An external hexagonal implant was inserted into a polyurethane block and one EsthetiCone abutment was connected to the implant. A plastic prosthetic cylinder was screwed onto the abutment and a conical pattern crown was fabricated using acrylic resin. An impression was made and ten identical standard acrylic resin patterns were obtained from the crown impression, which were cast in nickel-chromium alloy (n=10). Four strain gauges were bonded diametrically around the implant. The specimens were subjected to central (C) and lateral (L) axial loads of 30 kgf, on both devices: G1: LAD/C; G2: LAD/L; G3: UTM/C; G4: UTM/L. The data (με) were statistically analyzed by repeated measures ANOVA and Tukey's test (p<0.05). No statistically significant difference was found between the UTM and LAD devices, regardless of the type of load. It was concluded that the LAD is a reliable alternative, which induces microstrains to implants similar to those obtained with the UTM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Morse Taper implant system, developed from its introduction in engineering, has become increasingly effective for use in dentistry. However, other systems, main external hexagon type, have been used more frequently today. Current studies have been reported the positive features of the Morse taper system and even emphasized as ideal within the systems used in implantology. Unfortunately, some professional duty by not knowing this system, or even prefer hexagon type system by decreased cost of components, have refused to use it. Thus, this study was aimed to perform a brief review of the Morse taper system, emphasizing its main points of interest in dentistry, in an attempt to familiarize the professionals to at least learn more about this system that has the prospect to become the leading system implants used in dentistry in the coming years. It is concluded that this system of dental implants is favorable showing predictability and success.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of implants of greater length may be more favorable for the predictability of dental implants. This statement is relevant, since the cause of failures in dental implants are more related to biomechanical complications. The aim of this study was to evaluate the influence of increase of the length around the entire body of the implant. Six models were created with the presence of only one hexagonal implant (Master Screw connection, Implant Systems, São Paulo, Brazil) of 3.75 mm x 7.0 mm (Model A), 3.75 mm x 8.5 mm (Model B ), 3.75 mm x 10.0 mm (Model C) 3.75 mm x 11.5 mm (Model D) 3.75 mm x 13.0 mm (Model E) 3.75 mm x 15.0 mm (Model F) using the method of photoelasticity. The results were visualized through a qualitative analysis of stresses (number and intensity photoelastic fringes). The model A showed a pattern of less favorable stress distribution, the oblique loading was the most detrimental to the related structures. Conclusion: The increased length allowed for a better distribution of stresses. The oblique loading was more detrimental when compared to axial loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the biomechanical behavior of different implant connection types, by means of three-dimensional finite element analysis. 3 Three-dimensional models were created with a graphic modeling software: SolidWorks 2006 and Rhinoceros 4.0, and InVesalius (CTI, São Paulo, Brasil), the bone was obtained by computerized tomography of a sagittal section of the molar region. The model was composed by bone block with an implant (4 x 10 mm) (Conexão Sistemas de Prótese, São Paulo), with different implant connections: external hex, internal hex and Morse-taper with the corresponding prosthetic component Ucla or Morse-taper abutment. The Three-dimensional models were transferred to finite element software Femap 10.0 (Siemens PLM Software Inc., CA, USA), to generate a mesh, boundary conditions and loading. An axial (200N) and oblique load (100N) was applied on the occlusal surface of the crowns. Analyses were performed using the finite element software NEiNastran 9.0 (Noran Engineering, Inc., USA) and transferred to the Femap 10.0 to obtain the results; after the results were visualized using von Mises stress maps and Maximum stress principal. The results showed the stress distribution was similar between models, with a little superiority of Morse-taper connection. It was concluded that: the three connection types were biomechanical viable; The Morse-taper connection presented the better internal stress distribution; there was not significant biomechanical differences on the bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: the aim of this study was to evaluate the influence of occlusal veneering material in single fixed implant-supported crowns through the 3-D finite element method. Material and methods: Four models were fabricated using the Rhinoceros 4.0, SolidWorks, and InVesalius softwares. Each model represented a block of mandibular bone with an external hexagon implant of 5 mm x 10 mm and different veneering materials including NiCr (1), porcelain (2), composite resin (3), and acrylic resin (4). An axial load of 200 N and an oblique load of 100 N were applied. Results: model (2) with porcelain veneering presented a lower stress concentration for the NiCr framework, followed by the composite resin and acrylic resin. The stress distribution to the implant and bone tissue was similar for all models. Conclusions: there is no difference of stress distribution to the implant and supporting structures by varying the veneering material of a single implant-supported prosthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of implant angulation and abutment type (UCLA and Estheticone) on stress distribution in screw-retained implant-supported prostheses through photoelasticity. Three models were fabricated with photoelastic resin PL-2 (Vishay, Micro-Measurements Group, Inc Raleigh, N.C., USA) containing one external hexagon implant with 3.75x10mm (Master screw, Conexão Sistemas de Prótese Ltda., Arujá, São Paulo) with 0°, 17° and 30° degrees and a screw-retained prostheses with UCLA and Estheticone abutments. The assembly was positioned in a circular polariscope; axial and oblique (45° degrees) loads of 100N were applied in fixed points on the occlusal crown surfaces by a universal testing machine. The stress generated was photographed and analyzed qualitatively with appropriate software (Adobe Photoshop®). The results demonstrated the same number of fringes for both abutment types for each angulation, with fringes increasing in the same way. A higher number of fringes were closer in the oblique loading mode. It was concluded that there was no significant difference in stress distribution in prostheses with UCLA and Estheticone abutments. Higher stress concentrations were observed with increased implant angulation. Stress concentration and intensity were higher in the oblique load than in axial load application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: the aim of this study was to evaluate the influence of occlusal veneering material in single fixed implant-supported crowns through the 3-D finite element method. Material and methods: Four models were fabricated using the Rhinoceros 4.0, SolidWorks, and InVesalius softwares. Each model represented a block of mandibular bone with an external hexagon implant of 5 mm x 10 mm and different veneering materials including NiCr (1), porcelain (2), composite resin (3), and acrylic resin (4). An axial load of 200 N and an oblique load of 100 N were applied. Results: model (2) with porcelain veneering presented a lower stress concentration for the NiCr framework, followed by the composite resin and acrylic resin. The stress distribution to the implant and bone tissue was similar for all models. Conclusions: there is no difference of stress distribution to the implant and supporting structures by varying the veneering material of a single implant-supported prosthesis.