502 resultados para Heuristics.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the hybridization of two graph coloring heuristics (Saturation Degree and Largest Degree), and their application within a hyperheuristic for exam timetabling problems. Hyper-heuristics can be seen as algorithms which intelligently select appropriate algorithms/heuristics for solving a problem. We developed a Tabu Search based hyper-heuristic to search for heuristic lists (of graph heuristics) for solving problems and investigated the heuristic lists found by employing knowledge discovery techniques. Two hybrid approaches (involving Saturation Degree and Largest Degree) including one which employs Case Based Reasoning are presented and discussed. Both the Tabu Search based hyper-heuristic and the hybrid approaches are tested on random and real-world exam timetabling problems. Experimental results are comparable with the best state-of-the-art approaches (as measured against established benchmark problems). The results also demonstrate an increased level of generality in our approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the standard Vehicle Routing Problem (VRP), we route a fleet of vehicles to deliver the demands of all customers such that the total distance traveled by the fleet is minimized. In this dissertation, we study variants of the VRP that minimize the completion time, i.e., we minimize the distance of the longest route. We call it the min-max objective function. In applications such as disaster relief efforts and military operations, the objective is often to finish the delivery or the task as soon as possible, not to plan routes with the minimum total distance. Even in commercial package delivery nowadays, companies are investing in new technologies to speed up delivery instead of focusing merely on the min-sum objective. In this dissertation, we compare the min-max and the standard (min-sum) objective functions in a worst-case analysis to show that the optimal solution with respect to one objective function can be very poor with respect to the other. The results motivate the design of algorithms specifically for the min-max objective. We study variants of min-max VRPs including one problem from the literature (the min-max Multi-Depot VRP) and two new problems (the min-max Split Delivery Multi-Depot VRP with Minimum Service Requirement and the min-max Close-Enough VRP). We develop heuristics to solve these three problems. We compare the results produced by our heuristics to the best-known solutions in the literature and find that our algorithms are effective. In the case where benchmark instances are not available, we generate instances whose near-optimal solutions can be estimated based on geometry. We formulate the Vehicle Routing Problem with Drones and carry out a theoretical analysis to show the maximum benefit from using drones in addition to trucks to reduce delivery time. The speed-up ratio depends on the number of drones loaded onto one truck and the speed of the drone relative to the speed of the truck.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract In this paper, we address the problem of picking a subset of bids in a general combinatorial auction so as to maximize the overall profit using the first-price model. This winner determination problem assumes that a single bidding round is held to determine both the winners and prices to be paid. We introduce six variants of biased random-key genetic algorithms for this problem. Three of them use a novel initialization technique that makes use of solutions of intermediate linear programming relaxations of an exact mixed integer-linear programming model as initial chromosomes of the population. An experimental evaluation compares the effectiveness of the proposed algorithms with the standard mixed linear integer programming formulation, a specialized exact algorithm, and the best-performing heuristics proposed for this problem. The proposed algorithms are competitive and offer strong results, mainly for large-scale auctions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the capacitated lot sizing problem (CLSP) with a single stage composed of multiple plants, items and periods with setup carry-over among the periods. The CLSP is well studied and many heuristics have been proposed to solve it. Nevertheless, few researches explored the multi-plant capacitated lot sizing problem (MPCLSP), which means that few solution methods were proposed to solve it. Furthermore, to our knowledge, no study of the MPCLSP with setup carry-over was found in the literature. This paper presents a mathematical model and a GRASP (Greedy Randomized Adaptive Search Procedure) with path relinking to the MPCLSP with setup carry-over. This solution method is an extension and adaptation of a previously adopted methodology without the setup carry-over. Computational tests showed that the improvement of the setup carry-over is significant in terms of the solution value with a low increase in computational time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tal como se apresenta na atualidade, o campo de Teorias de Tomadas de Decisão reflete a intersecção de três desenvolvimentos teóricos principais: Utilidade Esperada, Heurísticas e Desvios e Intuição Holística. As relações entre estes não são clarividentes, nem estão estabelecidas na literatura sobre o assunto, sobretudo porque algumas das tendências em jogo ainda são muito novas. Meu objetivo é contribuir para o suprimento desta lacuna, oferecendo uma visão geral do campo, particularmente sensível às demandas epistemológicas às quais cada novo desenvolvimento respondeu e às limitações destas respostas. De especial interesse é o fato de que isto irá habilitar o leitor a compreender os fundamentos do novo conceito de intuição decisional que desponta e a se posicionar criticamente em relação ao mesmo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. We derive lists of proper-motions and kinematic membership probabilities for 49 open clusters and possible open clusters in the zone of the Bordeaux PM2000 proper motion catalogue (+ 11 degrees <= delta <= + 18 degrees). We test different parametrisations of the proper motion and position distribution functions and select the most successful one. In the light of those results, we analyse some objects individually. Methods. We differenciate between cluster and field member stars, and assign membership probabilities, by applying a new and fully automated method based on both parametrisations of the proper motion and position distribution functions, and genetic algorithm optimization heuristics associated with a derivative-based hill climbing algorithm for the likelihood optimization. Results. We present a catalogue comprising kinematic parameters and associated membership probability lists for 49 open clusters and possible open clusters in the Bordeaux PM2000 catalogue region. We note that this is the first determination of proper motions for five open clusters. We confirm the non-existence of two kinematic populations in the region of 15 previously suspected non-existent objects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we address the problem of scheduling jobs in a no-wait flowshop with the objective of minimising the total completion time. This problem is well-known for being nondeterministic polynomial-time hard, and therefore, most contributions to the topic focus on developing algorithms able to obtain good approximate solutions for the problem in a short CPU time. More specifically, there are various constructive heuristics available for the problem [such as the ones by Rajendran and Chaudhuri (Nav Res Logist 37: 695-705, 1990); Bertolissi (J Mater Process Technol 107: 459-465, 2000), Aldowaisan and Allahverdi (Omega 32: 345-352, 2004) and the Chins heuristic by Fink and Voa (Eur J Operat Res 151: 400-414, 2003)], as well as a successful local search procedure (Pilot-1-Chins). We propose a new constructive heuristic based on an analogy with the two-machine problem in order to select the candidate to be appended in the partial schedule. The myopic behaviour of the heuristic is tempered by exploring the neighbourhood of the so-obtained partial schedules. The computational results indicate that the proposed heuristic outperforms existing ones in terms of quality of the solution obtained and equals the performance of the time-consuming Pilot-1-Chins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a strategy for the solution of the WDM optical networks planning. Specifically, the problem of Routing and Wavelength Allocation (RWA) in order to minimize the amount of wavelengths used. In this case, the problem is known as the Min-RWA. Two meta-heuristics (Tabu Search and Simulated Annealing) are applied to take solutions of good quality and high performance. The key point is the degradation of the maximum load on the virtual links in favor of minimization of number of wavelengths used; the objective is to find a good compromise between the metrics of virtual topology (load in Gb/s) and of the physical topology (quantity of wavelengths). The simulations suggest good results when compared to some existing in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates how to make improved action selection for online policy learning in robotic scenarios using reinforcement learning (RL) algorithms. Since finding control policies using any RL algorithm can be very time consuming, we propose to combine RL algorithms with heuristic functions for selecting promising actions during the learning process. With this aim, we investigate the use of heuristics for increasing the rate of convergence of RL algorithms and contribute with a new learning algorithm, Heuristically Accelerated Q-learning (HAQL), which incorporates heuristics for action selection to the Q-Learning algorithm. Experimental results on robot navigation show that the use of even very simple heuristic functions results in significant performance enhancement of the learning rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work deals with the problem of minimizing the waste of space that occurs on a rotational placement of a set of irregular two dimensional polygons inside a two dimensional container. This problem is approached with an heuristic based on simulated annealing. Traditional 14 external penalization"" techniques are avoided through the application of the no-fit polygon, that determinates the collision free area for each polygon before its placement. The simulated annealing controls: the rotation applied, the placement and the sequence of placement of the polygons. For each non placed polygon, a limited depth binary search is performed to find a scale factor that when applied to the polygon, would allow it to be fitted in the container. It is proposed a crystallization heuristic, in order to increase the number of accepted solutions. The bottom left and larger first deterministic heuristics were also studied. The proposed process is suited for non convex polygons and containers, the containers can have holes inside. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work deals with the problem of minimizing the waste of space that occurs on a rotational placement of a set of irregular bi-dimensional items inside a bi-dimensional container. This problem is approached with a heuristic based on Simulated Annealing (SA) with adaptive neighborhood. The objective function is evaluated in a constructive approach, where the items are placed sequentially. The placement is governed by three different types of parameters: sequence of placement, the rotation angle and the translation. The rotation applied and the translation of the polygon are cyclic continuous parameters, and the sequence of placement defines a combinatorial problem. This way, it is necessary to control cyclic continuous and discrete parameters. The approaches described in the literature deal with only type of parameter (sequence of placement or translation). In the proposed SA algorithm, the sensibility of each continuous parameter is evaluated at each iteration increasing the number of accepted solutions. The sensibility of each parameter is associated to its probability distribution in the definition of the next candidate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the minimization of the mean absolute deviation from a common due date in a two-machine flowshop scheduling problem. We present heuristics that use an algorithm, based on proposed properties, which obtains an optimal schedule fora given job sequence. A new set of benchmark problems is presented with the purpose of evaluating the heuristics. Computational experiments show that the developed heuristics outperform results found in the literature for problems up to 500 jobs. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider a real-life heterogeneous fleet vehicle routing problem with time windows and split deliveries that occurs in a major Brazilian retail group. A single depot attends 519 stores of the group distributed in 11 Brazilian states. To find good solutions to this problem, we propose heuristics as initial solutions and a scatter search (SS) approach. Next, the produced solutions are compared with the routes actually covered by the company. Our results show that the total distribution cost can be reduced significantly when such methods are used. Experimental testing with benchmark instances is used to assess the merit of our proposed procedure. (C) 2008 Published by Elsevier B.V.