987 resultados para Heuristics-based Initilization
Resumo:
This paper presents a case-based heuristic selection approach for automated university course and exam timetabling. The method described in this paper is motivated by the goal of developing timetabling systems that are fundamentally more general than the current state of the art. Heuristics that worked well in previous similar situations are memorized in a case base and are retrieved for solving the problem in hand. Knowledge discovery techniques are employed in two distinct scenarios. Firstly, we model the problem and the problem solving situations along with specific heuristics for those problems. Secondly, we refine the case base and discard cases which prove to be non-useful in solving new problems. Experimental results are presented and analyzed. It is shown that case based reasoning can act effectively as an intelligent approach to learn which heuristics work well for particular timetabling situations. We conclude by outlining and discussing potential research issues in this critical area of knowledge discovery for different difficult timetabling problems.
Resumo:
This paper presents a case-based heuristic selection approach for automated university course and exam timetabling. The method described in this paper is motivated by the goal of developing timetabling systems that are fundamentally more general than the current state of the art. Heuristics that worked well in previous similar situations are memorized in a case base and are retrieved for solving the problem in hand. Knowledge discovery techniques are employed in two distinct scenarios. Firstly, we model the problem and the problem solving situations along with specific heuristics for those problems. Secondly, we refine the case base and discard cases which prove to be non-useful in solving new problems. Experimental results are presented and analyzed. It is shown that case based reasoning can act effectively as an intelligent approach to learn which heuristics work well for particular timetabling situations. We conclude by outlining and discussing potential research issues in this critical area of knowledge discovery for different difficult timetabling problems.
Resumo:
Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with adaptive perturbations, for a nurse scheduling problem arising at a major UK hospital. The main idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then mimic a natural evolutionary process on these components to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs a dynamic evaluation function which evaluates how well each component contributes towards the final objective. Two perturbation steps are then applied: the first perturbation eliminates a number of components that are deemed not worthy to stay in the current schedule; the second perturbation may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems.
Resumo:
International audience
Resumo:
In the standard Vehicle Routing Problem (VRP), we route a fleet of vehicles to deliver the demands of all customers such that the total distance traveled by the fleet is minimized. In this dissertation, we study variants of the VRP that minimize the completion time, i.e., we minimize the distance of the longest route. We call it the min-max objective function. In applications such as disaster relief efforts and military operations, the objective is often to finish the delivery or the task as soon as possible, not to plan routes with the minimum total distance. Even in commercial package delivery nowadays, companies are investing in new technologies to speed up delivery instead of focusing merely on the min-sum objective. In this dissertation, we compare the min-max and the standard (min-sum) objective functions in a worst-case analysis to show that the optimal solution with respect to one objective function can be very poor with respect to the other. The results motivate the design of algorithms specifically for the min-max objective. We study variants of min-max VRPs including one problem from the literature (the min-max Multi-Depot VRP) and two new problems (the min-max Split Delivery Multi-Depot VRP with Minimum Service Requirement and the min-max Close-Enough VRP). We develop heuristics to solve these three problems. We compare the results produced by our heuristics to the best-known solutions in the literature and find that our algorithms are effective. In the case where benchmark instances are not available, we generate instances whose near-optimal solutions can be estimated based on geometry. We formulate the Vehicle Routing Problem with Drones and carry out a theoretical analysis to show the maximum benefit from using drones in addition to trucks to reduce delivery time. The speed-up ratio depends on the number of drones loaded onto one truck and the speed of the drone relative to the speed of the truck.