992 resultados para Heterotrophs in permafrost
Resumo:
Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded for Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated. The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the thaw period.
Resumo:
We investigated total storage and landscape partitioning of soil organic carbon (SOC) in continuous permafrost terrain, central Canadian Arctic. The study is based on soil chemical analyses of pedons sampled to 1 m depth at 35 individual sites along three transects. Radiocarbon dating of cryoturbated soil pockets, basal peat and fossil wood shows that cryoturbation processes have been occurring since the Middle Holocene and that peat deposits started to accumulate in a forest-tundra environment where spruce was present (~6000 cal yrs BP). Detailed partitioning of SOC into surface organic horizons, cryoturbated soil pockets and non-cryoturbated mineral soil horizons is calculated (with storage in active layer and permafrost calculated separately) and explored using principal component analysis. The detailed partitioning and mean storage of SOC in the landscape are estimated from transect vegetation inventories and a land cover classification based on a Landsat satellite image. Mean SOC storage in the 0-100 cm depth interval is 33.8 kg C/m**2, of which 11.8 kg C/m**2 is in permafrost. Fifty-six per cent of the total SOC mass is stored in peatlands (mainly bogs), but cryoturbated soil pockets in Turbic Cryosols also contribute significantly (17%). Elemental C/N ratios indicate that this cryoturbated soil organic matter (SOM) decomposes more slowly than SOM in surface O-horizons.
Resumo:
Les tourbières ont contribué à refroidir le climat terrestre pendant l’Holocène en accumulant un réservoir de carbone important. Dans la forêt boréale canadienne, les sols gelés en permanence (pergélisols) sont répandus et ceux-ci sont principalement localisés dans les tourbières où ils forment des plateaux surélevés. Le dégel du pergélisol, causé entre autres par le réchauffement atmosphérique ou d’autres perturbations, provoque l’effondrement des plateaux et la saturation en eau du sol ce qui modifie entre autres le couvert végétal et le cycle du carbone. Les modélisations suggèrent que les latitudes nordiques seront les plus affectées par le réchauffement climatique alors qu’on y observe déjà un recul du couvert du pergélisol. Il est primordial de comprendre comment le dégel du pergélisol affecte la fonction de puits de carbone des tourbières puisque des rétroactions sur le climat sont possibles si une grande quantité de gaz à effet de serre est émise ou séquestrée. J’utilise une chronoséquence représentant le temps depuis le dégel d’un plateau de pergélisol des Territoires du Nord-Ouest pour comprendre les facteurs influençant l’aggradation et la dégradation du pergélisol dans les tourbières et évaluer l’effet du dégel sur l’accumulation de carbone et la préservation du carbone déjà accumulé. Les taux d’accumulation de carbone associés à la présence de pergélisol dans le passé et au présent sont lents, et la tourbe est moins décomposée dans les secteurs ayant été affectés plus longtemps par le pergélisol. En somme, le pergélisol réduit l’accumulation de carbone en surface mais permet une meilleure préservation du carbone déjà accumulé.
Resumo:
Les tourbières ont contribué à refroidir le climat terrestre pendant l’Holocène en accumulant un réservoir de carbone important. Dans la forêt boréale canadienne, les sols gelés en permanence (pergélisols) sont répandus et ceux-ci sont principalement localisés dans les tourbières où ils forment des plateaux surélevés. Le dégel du pergélisol, causé entre autres par le réchauffement atmosphérique ou d’autres perturbations, provoque l’effondrement des plateaux et la saturation en eau du sol ce qui modifie entre autres le couvert végétal et le cycle du carbone. Les modélisations suggèrent que les latitudes nordiques seront les plus affectées par le réchauffement climatique alors qu’on y observe déjà un recul du couvert du pergélisol. Il est primordial de comprendre comment le dégel du pergélisol affecte la fonction de puits de carbone des tourbières puisque des rétroactions sur le climat sont possibles si une grande quantité de gaz à effet de serre est émise ou séquestrée. J’utilise une chronoséquence représentant le temps depuis le dégel d’un plateau de pergélisol des Territoires du Nord-Ouest pour comprendre les facteurs influençant l’aggradation et la dégradation du pergélisol dans les tourbières et évaluer l’effet du dégel sur l’accumulation de carbone et la préservation du carbone déjà accumulé. Les taux d’accumulation de carbone associés à la présence de pergélisol dans le passé et au présent sont lents, et la tourbe est moins décomposée dans les secteurs ayant été affectés plus longtemps par le pergélisol. En somme, le pergélisol réduit l’accumulation de carbone en surface mais permet une meilleure préservation du carbone déjà accumulé.
Resumo:
We identified, mapped, and characterized a widespread area (gt;1,020 km2) of patterned ground in the Saginaw Lowlands of Michigan, a wet, flat plain composed of waterlain tills, lacustrine deposits, or both. The polygonal patterned ground is interpreted as a possible relict permafrost feature, formed in the Late Wisconsin when this area was proximal to the Laurentide ice sheet. Cold-air drainage off the ice sheet might have pooled in the Saginaw Lowlands, which sloped toward the ice margin, possibly creating widespread but short-lived permafrost on this glacial lake plain. The majority of the polygons occur between the Glacial Lake Warren strandline (~14.8 cal. ka) and the shoreline of Glacial Lake Elkton (~14.3 cal. ka), providing a relative age bracket for the patterned ground. Most of the polygons formed in dense, wet, silt loam soils on flat-lying sites and take the form of reticulate nets with polygon long axes of 150 to 160 m and short axes of 60 to 90 m. Interpolygon swales, often shown as dark curvilinears on aerial photographs, are typically slightly lower than are the polygon centers they bound. Some portions of these interpolygon swales are infilled with gravel-free, sandy loam sediments. The subtle morphology and sedimentological characteristics of the patterned ground in the Saginaw Lowlands suggest that thermokarst erosion, rather than ice-wedge replacement, was the dominant geomorphic process associated with the degradation of the Late-Wisconsin permafrost in the study area and, therefore, was primarily responsible for the soil patterns seen there today.
Resumo:
Evidence has been presented to show that the autotrophic nitrifying organisms get stimulated in the mulberry rhizosphere. Three species of Pseudomonas, one each of Achromobacter and Bacillus capable of degrading methionine were shown to be stimulated in the rhizosphere. These bacteria were capable of reversing the inhibitory effect of methionine on soil nitrification. Two of them were able to form nitrite from methionine. The possibility that the increased nitrifying activity in the mulberry rhizosphere in the presence of methionine found in mulberry root exudations was the result of the activity of these organisms was suggested.
Resumo:
This paper provides a snapshot of the permafrost thermal state in the Nordic area obtained during the International Polar Year (IPY) 2007-2009. Several intensive research campaigns were undertaken within a variety of projects in the Nordic countries to obtain this snapshot. We demonstrate for Scandinavia that both lowland permafrost in palsas and peat plateaus, and large areas of permafrost in the mountains are at temperatures close to 0°C, which makes them sensitive to climatic changes. In Svalbard and northeast Greenland, and also in the highest parts of the mountains in the rest of the Nordic area, the permafrost is somewhat colder, but still only a few degrees below the freezing point. The observations presented from the network of boreholes, more than half of which were established during the IPY, provide an important baseline to assess how future predicted climatic changes may affect the permafrost thermal state in the Nordic area. Time series of active-layer thickness and permafrost temperature conditions in the Nordic area, which are generally only 10 years in length, show generally increasing active-layer depths and rising permafrost temperatures.