134 resultados para Heteroaromatic imine
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
L’importance des produits naturels dans le développement de nouveaux médicaments est indéniable. Malheureusement, l’isolation et la purification de ces produits de leurs sources naturelles procure normalement de très faibles quantités de molécules biologiquement actives. Ce problème a grandement limité l’accès à des études biologiques approfondies et/ou à une distribution sur une grande échelle du composé actif. Par exemple, la famille des pipéridines contient plusieurs composés bioactifs isolés de sources naturelles en très faible quantité (de l’ordre du milligramme). Pour pallier à ce problème, nous avons développé trois nouvelles approches synthétiques divergentes vers des pipéridines polysubstituées contenant une séquence d’activation/désaromatisation d’un sel de pyridinium chiral et énantioenrichi. La première approche vise la synthèse de pipéridines 2,5-disubstituées par l’utilisation d’une réaction d’arylation intermoléculaire sur des 1,2,3,4-tétrahydropyridines 2-substituées. Nous avons ensuite développé une méthode de synthèse d’indolizidines et de quinolizidines par l’utilisation d’amides secondaires. Cette deuxième approche permet ainsi la synthèse formelle d’alcaloïdes non-naturels à la suite d’une addition/cyclisation diastéréosélective et régiosélective sur un intermédiaire pyridinium commun. Finalement, nous avons développé une nouvelle approche pour la synthèse de pipéridines 2,6-disubstituées par l’utilisation d’une réaction de lithiation dirigée suivie d’un couplage croisé de Negishi ou d’un parachèvement avec un réactif électrophile. Le développement de transformations chimiosélectives et versatiles est un enjeu crucial et actuel pour les chimistes organiciens. Nous avons émis l’hypothèse qu’il serait possible d’appliquer le concept de chimiosélectivité à la fonctionnalisation d’amides, un des groupements le plus souvent rencontrés dans la structure des molécules naturelles. Dans le cadre précis de cette thèse, des transformations chimiosélectives ont été réalisées sur des amides secondaires fonctionnalisés. La méthode repose sur l’activation de la fonction carbonyle par l’anhydride triflique en présence d’une base faible. Dans un premier temps, l’amide ainsi activé a été réduit sélectivement en fonction imine, aldéhyde ou amine en présence d’hydrures peu nucléophiles. Alternativement, un nucléophile carboné a été employé afin de permettre la synthèse de cétones ou des cétimines. D’autre part, en combinant un amide et un dérivé de pyridine, une réaction de cyclisation/déshydratation permet d’obtenir les d’imidazo[1,5-a]pyridines polysubstituées. De plus, nous avons brièvement appliqué ces conditions d’activation au réarrangement interrompu de type Beckmann sur des cétoximes. Une nouvelle voie synthétique pour la synthèse d’iodures d’alcyne a finalement été développée en utilisant une réaction d’homologation/élimination en un seul pot à partir de bromures benzyliques et allyliques commercialement disponibles. La présente méthode se distincte des autres méthodes disponibles dans la littérature par la simplicité des procédures réactionnelles qui ont été optimisées afin d’être applicable sur grande échelle.
Resumo:
El treball experimental que ha permès redactar la present Tesi Doctoral ha estat dividit en dues parts. A la primera part es presenten els resultats referents a la síntesi estereocontrolada de noves heteroarilglicines (quinolil i pirazolilglicines) a partir de cetones acetilèniques, substrats quirals que permeten accedir a l'esquelet de diferents heterocicles (quinolines i pirazoles), la posterior obtenció dels corresponents quinolil i pirazolil--aminoalcohols i les diferents metodologies d'oxidació per tal d'accedir a les corresponents quinolil i priazolilglicines objectiu. A la segona part d'aquesta memòria s'ha estudiat, en dissolució, l'habilitat del grup alquilsulfona com a grup sortint eficaç en reaccions d'ipso-substitució nucleofilica. El desenvolupament d'aquesta reacció ha servit de punt de partida per a la creació de llibreries d'heterocicles amb alta diversitat molecular i potencial interès biològic sobre fase sòlida.
Resumo:
The [2+2+2] cycloaddition reaction involves the formation of three carbon-carbon bonds in one single step using alkynes, alkenes, nitriles, carbonyls and other unsaturated reagents as reactants. This is one of the most elegant methods for the construction of polycyclic aromatic compounds and heteroaromatic, which have important academic and industrial uses. The thesis is divided into ten chapters including six related publications. The first study based on the Wilkinson’s catalyst, RhCl(PPh3)3, compares the reaction mechanism of the [2+2+2] cycloaddition process of acetylene with the cycloaddition obtained for the model of the complex, RhCl(PH3)3. In an attempt to reduce computational costs in DFT studies, this research project aimed to substitute PPh3 ligands for PH3, despite the electronic and steric effects produced by PPh3 ligands being significantly different to those created by PH3 ones. In this first study, detailed theoretical calculations were performed to determine the reaction mechanism of the two complexes. Despite some differences being detected, it was found that modelling PPh3 by PH3 in the catalyst helps to reduce the computational cost significantly while at the same time providing qualitatively acceptable results. Taking into account the results obtained in this earlier study, the model of the Wilkinson’s catalyst, RhCl(PH3)3, was applied to study different [2+2+2] cycloaddition reactions with unsaturated systems conducted in the laboratory. Our research group found that in the case of totally closed systems, specifically 15- and 25-membered azamacrocycles can afford benzenic compounds, except in the case of 20-membered azamacrocycle (20-MAA) which was inactive with the Wilkinson’s catalyst. In this study, theoretical calculations allowed to determine the origin of the different reactivity of the 20-MAA, where it was found that the activation barrier of the oxidative addition of two alkynes is higher than those obtained for the 15- and 25-membered macrocycles. This barrier was attributed primarily to the interaction energy, which corresponds to the energy that is released when the two deformed reagents interact in the transition state. The main factor that helped to provide an explanation to the different reactivity observed was that the 20-MAA had a more stable and delocalized HOMO orbital in the oxidative addition step. Moreover, we observed that the formation of a strained ten-membered ring during the cycloaddition of 20-MAA presents significant steric hindrance. Furthermore, in Chapter 5, an electrochemical study is presented in collaboration with Prof. Anny Jutand from Paris. This work allowed studying the main steps of the catalytic cycle of the [2+2+2] cycloaddition reaction between diynes with a monoalkyne. First kinetic data were obtained of the [2+2+2] cycloaddition process catalyzed by the Wilkinson’s catalyst, where it was observed that the rate-determining step of the reaction can change depending on the structure of the starting reagents. In the case of the [2+2+2] cycloaddition reaction involving two alkynes and one alkene in the same molecule (enediynes), it is well known that the oxidative coupling may occur between two alkynes giving the corresponding metallacyclopentadiene, or between one alkyne and the alkene affording the metallacyclopentene complex. Wilkinson’s model was used in DFT calculations to analyze the different factors that may influence in the reaction mechanism. Here it was observed that the cyclic enediynes always prefer the oxidative coupling between two alkynes moieties, while the acyclic cases have different preferences depending on the linker and the substituents used in the alkynes. Moreover, the Wilkinson’s model was used to explain the experimental results achieved in Chapter 7 where the [2+2+2] cycloaddition reaction of enediynes is studied varying the position of the double bond in the starting reagent. It was observed that enediynes type yne-ene-yne preferred the standard [2+2+2] cycloaddition reaction, while enediynes type yne-yne-ene suffered β-hydride elimination followed a reductive elimination of Wilkinson’s catalyst giving cyclohexadiene compounds, which are isomers from those that would be obtained through standard [2+2+2] cycloaddition reactions. Finally, the last chapter of this thesis is based on the use of DFT calculations to determine the reaction mechanism when the macrocycles are treated with transition metals that are inactive to the [2+2+2] cycloaddition reaction, but which are thermally active leading to new polycyclic compounds. Thus, a domino process was described combining an ene reaction and a Diels-Alder cycloaddition.
Resumo:
Reaction of a group of N-(2'-hydroxyphenyl)benzaldimines, derived from 2-aminophenol and five para-substituted benzaldehydes (the para substituents are OCH3, CH3, H, Cl and NO2), with [Rh(PPh3)(3)Cl] in refluxing toluene in the presence of a base (NEW afforded a family of organometallic complexes of rhodium(III). The crystal structure of one complex has been determined by X-ray crystallography. In these complexes the benzaldimine ligands are coordinated to the metal center, via dissociation of the phenolic proton and the phenyl proton at the ortho position of the phenyl ring in the imine fragment, as dianionic tridentate C,N,O-donors, and the two PPh3 ligands are trans. The complexes are diamagnetic (low-spin d(6), S = 0) and show intense MLCT transitions in the visible region. Cyclic voltammetry shows a Rh(III)-Rh(IV) oxidation within 0.63-0.93 V vs SCE followed by an oxidation of the coordinated benzaldimine ligand. A reduction of the coordinated benzaldimine is also observed within -0.96 to -1.04 V vs SCE. Potential of the Rh(Ill)-Rh(IV) oxidation is found to be sensitive to the nature of the para-substituent. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In the title family, the ONO donor ligands are the acetylhydrazones of salicylaidehyde (H2L1) and 2-hydroxyacetophenone (H2L2) (general abbreviation, H2L). The reaction of bis(acetylacetonato)oxovanadium(IV) with a mixture of tridentate H2L and a bidentate NN donor [e.g., 2,2'-bipyridine(bpy) or 1,10-phenanthroline(phen), hereafter B] ligands in equimolar ratio afforded the tetravalent complexes of the type [(VO)-O-IV(L)(B)]; complexes (1)-(4) whereas, if B is replaced by 8-hydroxyquinoline(Hhq) (which is a bidentate ON donor ligand), the above reaction mixture yielded the pentavalent complexes of the type [(VO)-O-V(L)(hq)]; complexes (5) and (6). Aerial oxygen is most likely the oxidant (for the oxidation of V-IV -> V-V) in the synthesis of pentavalent complexes (5) and (6). [(VO)-O-IV(L)(B)] complexes are one electron paramagnetic and display axial EPR spectra, while the [(VO)-O-V(L)(hq)] complexes are diamagnetic. The X-ray structure of [(VO)-O-V(L-2)(hq)] (6) indicates that H2L2 ligand is bonded with the vanadium meridionally in a tridentate dinegative fashion through its phenolic-O, enolic-O and imine-N atoms. The general bond length order is: oxo < phenolato < enolato. The V-O (enolato) bond is longer than V-O (phenolato) bond by similar to 0.07 angstrom and is identical with V-O (carboxylate) bond. H-1 NMR spectrum of (6) in CDCl3 solution indicates that the binding nature in the solid state is also retained in solution. Complexes (1)(4) display two ligand-field transitions in the visible region near 820 and 480 nm in DMF solution and exhibit irreversible oxidation peak near +0.60 V versus SCE in DMSO solution, while complexes (5) and (6) exhibit only LMCT band near 535 nm and display quasi-reversible one electron reduction peak near -0.10 V versus SCE in CH2Cl2 solution. The VO3+-VO2+ E-1/2 values shift considerably to more negative values when neutral NN donor is replaced by anionic ON donor species and it also provides better VO3+ binding via phenolato oxygen. For a given bidentate ligand, E-1/2 increases in the order: (L-2)(2-) < (L-1)(2-). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Four tridentate dibasic ONO donor hydrazone ligands derived from the condensation of benzoylhydrazine with either 2-hydroxyacetophenone or its para substituted derivatives (H2L1-4, general abbreviation H2L) have been used as primary ligands and 8-hydroxyquinoline (Hhq, a bidentate monobasic ON donor species) has been used as auxiliary ligand. The reaction of [(VO)-O-IV(acac)21 with H2L in methanol followed by the addition of Hhq in equimolar ratio under aerobic condition afforded the mixed-ligand oxovanadium(V) complexes of the type [(VO)-O-V(L)(hq)] (1-4) in excellent yield. The X-ray structure of the compound [(VO)-O-V(L-4)(hq)] (4) indicates that the H2L4 ligand is bonded with vanadium meridionally in a tridentate dinegative fashion through its deprotonated phenolic-O, deprotonated enolic-O and imine-N atoms. The V-O bond length order is: oxo < phenolato < enolato. H-1 NMR spectra of 4 in CDCl3 solution indicates that it's solid-state structure is retained in solution. Complexes are diamagnetic and exhibit only ligand to metal charge transfer (LMCT) transition band near 530 nm in CH2Cl2 solution in addition to intra-ligand pi-pi* transition band near 335 rim and they display quasi-reversible one electron reduction peak near -0.10 V versus SCE in CH2Cl2 solution. lambda(max) (for LMCT transition) and the reduction peak potential (E-p(c)) values of the complexes are found to be linearly related with the Hammett (sigma) constants of the substituents in the aryloxy ring of the hydrazone ligands. lambda(max) and E-p(c) values show large dependence d lambda(max)/d sigma = 32.54 nm and dE(p)(c)/d sigma = 0.19 V, respectively, on the Hammett constant. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
[VIVO(acac)(2)] reacts with an equimolar amount of benzoyl hydrazone of 2-hydroxyacetophenone (H2L1) or 5-chloro-2-hydroxyacetophenone (H2L2) in the presence of excess pyridine (py) in methanol to produce the quaternary [(VO)-O-V(L-1)(OCH3)(py)] (1) and [(VO)-O-V(L-2)(OCH3)(py)] (2) complexes, respectively, while under similar condition, the benzoyl hydrazones of 2-hydroxy-5-methylacetophenone (H2L3) and 2-hydroxy-5-methoxyacetophenone (H2L4) afforded only the methoxy bridged dimeric [(VO)-O-V(L-3/L-4)(OCH3)](2) complexes. The X-ray structural analysis of 1 and 2 indicates that the geometry around the metal is distorted octahedral where the three equatorial positions are occupied by the phenolate-O, enolate-O and the imine-N of the fully deprotonated hydrazone ligand in its enolic form and the fourth one by a methoxide-O atom. An oxo-O and a pyridine-N atom occupy two axial positions. Quaternary complexes exhibit one quasi-reversible one-electron reduction peak near 0.25 V versus SCE in CH2Cl2 and they decompose appreciably to the corresponding methoxy bridged dimeric complex in CDCl3 solution as indicated by their H-1 NMR spectra. These quaternary VO3+ complexes are converted to the corresponding V2O34+-complexes simply on refluxing them in acetone and to the VO2+-complexes on reaction with KOH in methanol. An equimolar amount of 8-hydroxyquinoline (Hhq) converts these quaternary complexes to the ternary [(VO)-O-V(L)(hq)] complexes in CHCl3. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
The aza-Darzens ('ADZ') reactions of N-diphenylphosphinyl ('N-Dpp') imines with chiral enolates derived from N-bromoacetyl 2S-2,10-camphorsultam proceed in generally good yield to give N-diphenylphosphinyl aziridinoyl sultams. However, the stereoselectivity of the reaction is dependent upon the structure of the imine substituent: when the chiral enolate was reacted with arylimines substituted in the ortho-position, mixtures of cis- and trans-2'R,3'R-aziridines were obtained, often with a complete selectivity in favour of the trans-isomer. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Treatment of [Ir(bpa)(cod)](+) complex [1](+) with a strong base (e.g., tBuO(-)) led to unexpected double deprotonation to form the anionic [Ir-(bpa-2H)(cod)](-) species [3](-), via the mono-deprotonated neutral amido complex [Ir(bpa-H)(cod)] as an isolable intermediate. A certain degree of aromaticity of the obtained metal-chelate ring may explain the favourable double deprotonation. The rhodium analogue [4](-) was prepared in situ. The new species [M(bpa-2H)(cod)](-) (M = Rh, Ir) are best described as two-electron reduced analogues of the cationic imine complexes [M-I(cod)(Py-CH2-N=CH-Py)](+). One-electron oxidation of [3](-) and [4](-) produced the ligand radical complexes [3]* and [4]*. Oxygenation of [3](-) with O-2 gave the neutral carboxamido complex [Ir(cod)(py-CH2-N-CO-py)] via the ligand radical complex [3]* as a detectable intermediate.
Resumo:
Semi-crystalline poly(ether ketone)s are important high-temperature engineering thermoplastics, but are difficult to characterize at the molecular level because of their insolubility in conventional organic solvents. Here we report that polymers of this type, including PEEK, react cleanly at high temperatures with low-volatility aralkyl amines to afford stable, noncrystalline poly(ether-imine)s, which are readily soluble in solvents such as chloroform, THF and DMF and so characterizable by conventional size-exclusion chromatography.
Resumo:
Treatment of of (R,R)-N,N-salicylidene cyclohexane 1,2-diamine(H(2)L(1)) in methanol with aqueous NH(4)VO(3) solution in perchloric acid medium affords the mononuclear oxovanadium(V) complex [VOL(1)(MeOH)]-ClO(4) (1) as deep blue solid while the treatment of same solution of (R,R)-N,N-salicylidene cyclohexane 1,2-diamine(H(2)L(1)) with aqueous solution of VOSO(4) leads to the formation of di-(mu-oxo) bridged vanadium(V) complex [VO(2)L(2)](2) (2) as green solid where HL(2) = (R,R)-N-salicylidene cyclohexane 1,2-diamine. The ligand HL(2) is generated in situ by the hydrolysis of one of the imine bonds of HL(1) ligand during the course of formation of complex [VO(2)L(2)](2) (2). Both the compounds have been characterized by single crystal X-ray diffraction as well as spectroscopic methods. Compounds 1 and 2 are to act as catalyst for the catalytic bromide oxidation and C-H bond oxidation in presence of hydrogen peroxide. The representative substrates 2,4-dimethoxy benzoic acid and para-hydroxy benzoic acids are brominated in presence of H(2)O(2) and KBr in acid medium using the above compounds as catalyst. The complexes are also used as catalyst for C-H bond activation of the representative hydrocarbons toluene, ethylbenzene and cyclohexane where hydrogen peroxide acts as terminal oxidant. The yield percentage and turnover number are also quite good for the above catalytic reaction. The oxidized products of hydrocarbons have been characterized by GC Analysis while the brominated products have been characterized by (1)H NMR spectroscopic studies.
Resumo:
Mebendazole (MBZ) is a common benzimidazole anthelmintic that exists in three different polymorphic forms, A, B, and C. Polymorph C is the pharmaceutically preferred form due to its adequated aqueous solubility. No single crystal structure determinations depicting the nature of the crystal packing and molecular conformation and geometry have been performed on this compound. The crystal structure of mebendazole form C is resolved for the first time. Mebendazole form C crystallizes in the triclinic centrosymmetric space group and this drug is practically planar, since the least-squares methyl benzimidazolylcarbamate plane is much fitted on the forming atoms. However, the benzoyl group is twisted by 31(1)degrees from the benzimidazole ring, likewise the torsional angle between the benzene and carbonyl moieties is 27(1)degrees. The formerly described bends and other interesting intramolecular geometry features were viewed as consequence of the intermolecular contacts occurring within mebendazole C structure. Among these features, a conjugation decreasing through the imine nitrogen atom of the benzimidazole core and a further resonance path crossing the carbamate one were described. At last, the X-ray powder diffractogram of a form C rich mebendazole mixture was overlaid to the calculated one with the mebendazole crystal structure. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:2336-2344, 2009
Resumo:
The electrochemical oxidation of anodic metal (cobalt, nickel, copper, zinc and cadmium) in an acetonitrile solution of the Schiff-base ligand 2-(tosylamino)-N-[2-(tosylamino)-benzylidene] aniline (H(2)L) afforded the homoleptic compounds [ML]. The addition of 1,1-diphenylphosphanylmethane (dppm), 2,2`-bipyridine (bipy) or 1,10-phenanthroline (phen) to the electrolytic phase gave the heteroleptic complexes [NiL(dppm)], [ML(bipy)] and [ML(phen)]. The crystal structures of H(2)L (1), [NiL] (2), [CuL] (3), [NiL(dppm)] (4), [CoL(phen)] (5), [CuL(bipy)] (6) and [Zn(Lphen)] (7) were determined by X-ray diffraction. The homoleptic compounds [NiL] and [CuL] are mononuclear with a distorted square planar [MN(3)O] geometry with the Schiff base acting as a dianionic (N(amide)N(amide)N(imine)O(tosyl)) tetradentate ligand. Both compounds exhibit an unusual pi-pi stacking interaction be-tween a six-membered chelate ring containing the metal and a phenylic ring of the ligand. In the heteroleptic complex [NiL(dppm)], the nickel atom is in a distorted tetrahedral [NiN(3)P] environment defined by the imine, two amide nitrogen atoms of the L(2-) dianionic tridentate ligand and one of the phosphorus atoms of the dppm molecule. In the other heteroleptic complexes, [CoL(phen)], [CuL(bipy)] and [ZnL(phen)], the metal atom is in a five-coordinate environment defined by the imine, two amide nitrogen atoms of the dianionic tridentate ligand and the two bipyridine or phenanthroline nitrogen atoms. The compounds were characterized by microanalysis, IR and UV/Vis (Co, Ni and Cu complexes) spectroscopy, FAB mass spectrometry and (1)H NMR ([NiL] and Zn and Cd complexes) and EPR spectroscopy (Cu complexes).
Resumo:
For the first time, the resonance Raman spectroscopy was used to characterize polymers derived from meta- and para-nitroanilines. In order to improve the polymer structure analysis, other techniques were also used such as FTIR, UV-vis, XRD, XPS, EPR and N K-XANES. The insertion of strong electron-withdrawing groups (NO2) in polyaniline (PANI)-like backbone causes drastic changes in the lower energy charge transfer states, related to the polymer effective conjugation length. The resonance Raman data show that the NO2 moiety has a minor contribution on the CT state in poly(meta-nitroaniline), PMN, while in the poly(para-nitroaniline), PPN, the quinoid structure induced by para-substitution increases the charge density of NO2 groups, causing a more localized chromophore. The characterization of the imine nitrogen and of the protonated segments was done by XPS, N K-XANES and EPR spectroscopies and the lower polymerization degree of PPN, in comparison to PMN, is confirmed by XRD and TG data. (C) 2007 Elsevier B.V. All rights reserved.