391 resultados para Hemp hurd


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2001 a scoping study (phase I) was commissioned to determine and prioritise the weed issues of cropping systems with dryland cotton. The main findings were that the weed flora was diverse, cropping systems complex, and weeds had a major financial and economical impact. Phase II 'Best weed management strategies for dryland cropping systems with cotton' focused on improved management of the key weeds, bladder ketmia, sowthistle, fleabane, barnyard grass and liverseed grass.In Phase III 'Improving management of summer weeds in dryland cropping systems with cotton', more information on the seed-bank dynamics of key weeds was gained in six pot and field studies. The studies found that these characteristics differed between species, and even climate in the case of bladder ketmia. Species such as sowthistle, fleabane and barnyard grass emerged predominately from the surface soil. Sweet summer grass was also in this category but also had a significant proportion emerging from 5 cm depth. Bladder ketmia in central Queensland emerged mainly from the top 2 cm, whereas in southern Queensland it emerged mainly from 5 cm. Liverseed grass had its highest emergence from 5 cm below the surface. In all cases the persistence of seed increased with increasing soil depth. Fleabane was also found to be sensitive to soil type with no seedlings emerging in the self-mulching black vertisol soil. A strategic tillage trial showed that burial of fleabane seed, using a disc or chisel plough, to a depth of greater than 2 cm can significantly reduce subsequent fleabane emergence. In contrast, tillage increased barnyard grass emergence and tended to decrease persistence. This research showed that weed management plans can not be blanketed across all weed species, rather they need to be targeted for each main weed species.This project has also resulted in an increased knowledge of how to manage fleabane from the eight experiments; one in wheat, two in sorghum, one in cotton and three in fallow on double knock. For summer crops, the best option is to apply a highly effective fallow treatment prior to sowing the crops. For winter crops, the strategy is the integration of competitive crops, residual herbicide followed by a knockdown to control survivors. This project explored further the usefulness of the double knock tactic for weed control and preventing seed set. Two field and one pot experiments have shown that this tactic was highly effective for fleabane control. Paraquat products provided good control when followed by glyphosate. When 2, 4-D was added in a tank mix with glyphosate and followed by paraquat products, 99-100% control was achieved in all cases. The ideal follow-up times for paraquat products after glyphosate were 5-7 days. The preferred follow-up times for 2, 4-D after glyphosate were on the same day and one day later. The pot trial, which compared a population from a cropping field with previous glyphosate exposure and a population from a non-cropping area with no previous glyphosate herbicide exposure, showed that the pervious herbicide exposure affected the response of fleabane to herbicidal control measures. The web-based brochure on managing fleabane has been updated.Knowledge on management of summer grasses and safe use of residual herbicides was derived from eight field and pot experiments. Residual grass and broadleaf weed control was excellent with atrazine pre-plant and at-planting treatments, provided rain was received within a short interval after application. Highly effective fallow treatments (cultivation and double knock), not only gave excellent grass control in the fallow, also gave very good control in the following cotton. In the five re-cropping experiments, there were no adverse impacts on cotton from atrazine, metolachlor, metsulfuron and chlorsulfuron residues following use in previous sorghum, wheat and fallows. However, imazapic residues did reduce cotton growth.The development of strategies to reduce the heavy reliance on glyphosate in our cropping systems, and therefore minimise the risk of glyphosate resistance development, was a key factor in the research undertaken. This work included identifying suitable tactics for summer grass control, such as double knock with glyphosate followed by paraquat and tillage. Research on fleabane also concentrated on minimising emergence through tillage, and applying the double knock tactic. Our studies have shown that these strategies can be used to prevent seed set with the goal of driving down the seed bank. Utilisation of the strategies will also reduce the reliance on glyphosate, and therefore reduce the risk of glyphosate resistance developing in our cropping systems.Information from this research, including ecological and management data were collected from an additional eight paddock monitoring sites, was also incorporated into the Weeds CRC seed bank model "Weed Seed Wizard", which will be able to predict the impact of different management options on weed populations in cotton and grain farming systems. Extensive communication activities were undertaken throughout this project to ensure adoption of the new strategies for improved weed management and reduced risk for glyphosate resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

R&D to facilitate incorporation of grain and pulse crop phases in Central Queensland irrigated cotton monoculture systems and improve profitability of regional cropping systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DAFF scholarship to train in the recognition and identification of defoliating strains of Verticillium dahliae in cotton and vegetable crops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research, development and extension to achieve the implementation of Integrated Pest Management in grains-cotton broadacre farming systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diminishing water supply, changing weather patterns and pressure to enhance environmental flows are making it imperative to optimise water use efficiency (WUE) on cotton/grain farming systems. Growers are looking for better strategies to make the best use of limited water, but it is still not clear how to best use the available water at farm and field scale. This research project investigated the impact of management strategies to deal with limited water supplies on the yield and quality of irrigated cotton and wheat. The objectives were: (1) to develop irrigation management guidelines for the main irrigated crops on the Darling Downs for full- and deficitirrigation scenarios, taking into account the critical factors that affect irrigation decisions at the local level, (2) to quantify the evapotranspiration (ET) of Bollgard II cotton and wheat and its relationship to yield and quality under full- and deficit-irrigation scenarios, and (3) to increase industry awareness and education of farming systems practises for optimised economic water use efficiency.Objective (1) was addressed by (A) collaborating with ASPRU to develop the APSFarm model within APSIM to be able to perform multi-paddock simulations. APSFarm was then tested by conducting a case study at a farm near Dalby, and (B) conducting semi-structured interviews with individual farmers and crop consultants on the Darling Downs to document the strategies they are using to deal with limited water. Objective (2) was addressed by (A) building and installing 12 large (1 m x 1m x 1.5 m) weighing lysimeters to measure crop evapotranspiration. The lysimeters were installed at the Agri-Science Queensland research station at Kingsthorpe in November 2008, (B) conducting field experiments to measure crop evapotranspiration and crop development under four irrigation treatments, including dryland, deficit-irrigation, and full irrigation. Field experiments were conducted with cotton in 2007-08 and 2008-09, and with wheat in 2008 and 2009, and (C) collaborating with USQ on a PhD thesis to quantify the impact of crop stress on crop evapotranspiration and canopy temperature. Glasshouse experiments were conducted with wheat in 2008 and with cotton in 2008-09. Objective (3) was addressed by (A) conducting a field day at Kingsthorpe in 2009, which was attended by 80 participants, (B) presenting information in conferences in Australia and overseas, (D) presenting information at farmers meeting, (E) making presentations to crop consultants, and (F) preparing extension publications.As part of this project we contributed to the development of APSfarm, which has been successfully applied to evaluate the feasibility of practices at the whole-farm scale. From growers and crop consultants interviews we learned that there is a great variety of strategies, at different scales, that they are using to deal with limited water situation. These strategies will be summarised in the "e;Limited Water Guidelines for the Darling Downs"e; that we are currently preparing. As a result of this project, we now have a state-of-the-art lysimeter research facility (23 large weighing lysimeters) to be able to conduct replicated experiments to investigate daily water use of a variety of crops under different irrigation regimes and under different environments. Under this project, a series of field and glasshouse experiments were conducted with cotton and wheat, investigating aspects like: (A) quantification of daily and seasonal crop water use under nonstressed and stressed conditions, (B) impact of row configuration on crop water use, (C) impact of water stress on yield, evapotranspiration, crop vegetative and reproductive development, soil water extraction pattern, yield and yield quality. The information obtained from this project is now being used to develop web-based tools to help growers make planning and day-to-day irrigation decisions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2006, Tobacco streak virus (TSV) was identified as the causal agent of the devastating sunflower necrosis disease in central Queensland (CQ), and subsequently in 2007 as the cause of major losses in mungbeans in the same area. It has been a major factor in the recent downturn in the sunflower industry in CQ. Surveys in 2007/2008 as part of a one year scoping study (project 03DAQ005) found TSV in cotton in CQ. The symptoms were mostly confined to the feeding sites of the thrips and appeared as reddish spots and rings, but only occasionally the plants were systemically infected and showed a chlorotic mosaic and leaf deformation. The major objectives of this project (DAQ0002) were to determine: the incidence and distribution of TSV in cotton and its likely effect on yield; the thrips vector species associated with TSV infections in cotton; and the factors that may lead to systemic infections. In contrast to the extensive damage observed in sunflower and mungbean crops from the same region, TSV has caused no measurable damage in commercial cotton crops surveyed in CQ over the seasons 2008/9 to 2010/11. No TSV infected cotton was found in regions outside of CQ and the geographical distribution of TSV disease in cotton (and other susceptible hosts) appears to be closely related to the distribution of the major alternative host, parthenium weed. The most likely thrips species responsible for transmission of TSV into cotton is the tomato thrips (Frankliniella schultzei) and onion thrips (Thrips tabaci). Systemically infected plants are rarely seen in commercial crops and have also been rarely produced in controlled tests. It appears that systemic infection may be transient with only mild symptoms being produced intermittently. With current cultivars and conditions, it appears likely that TSV will continue to cause only minor levels of mild local lesions with no impact on yield in cotton crops. It appears that no specific control strategies are required to limit the impact of TSV in cotton. However, general farm hygiene to minimise the presence of the major alternative host of TSV, parthenium weed, is advised and may be of vital importance if TSV susceptible rotational crops such as mung beans are grown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of glyphosate tolerant cotton has significantly improved the flexibility and management of a number of problem weeds in cotton systems. However, reliance on glyphosate poses risks to the industry in term of glyphosate resistance and species shift. The aims of this project were to identify these risks, and determine strategies to prevent and mitigate the potential for resistance evolution. Field surveys identified fleabane as the most common weed now in both irrigated and dryland system. Sowthistle has also increased in prevalence, and bladder ketmia and peachvine remained common. The continued reliance on glyphosate has favoured small seeded, and glyphosate tolerant species. Fleabane is both of these, with populations confirmed resistant in grains systems in Queensland and NSW. When species were assessed for their resistance risk, fleabane, liverseed grass, feathertop Rhodes grass, sowthistle and barnyard grass were determined to have high risk ratings. Management practices were also determined to rely heavily on glyphosate and therefore be high risk in summer fallows, and dryland glyphosate tolerant and conventional cotton. Situations were these high risk species are present in high risk cropping phases need particular attention. The confirmation of a glyphosate resistance barnyard grass population in a dryland glyphosate tolerant cotton system means resistance is now a reality for the cotton industry. However, experiments have shown that resistant populations can be managed with other herbicide options currently available. However, the options for fleabane management in cotton are still limited. Although some selective residual herbicides are showing promise, the majority of fleabane control tactics can only be used in other phases of the cotton rotation. An online glyphosate resistance tool has been developed. This tool allows growers to assess their individual glyphosate resistance risks, and how they can adjust their practices to reduce their risks. It also provides researchers with current information on weed species present and practices used across the industry. This tool will be extremely useful in tailoring future research and extension efforts. Simulations from the expanded glyphosate resistance model have shown that glyphosate resistance can be prevented and managed in glyphosate-tolerant cotton farming systems. However, for strategies to be successful, some effort is required. Simulations have shown the importance of controlling survivors of glyphosate applications, using effective glyphosate alternatives in fallows, and combining several effective glyphosate alternatives in crop, and these are the key to the prevention and management of glyphosate resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a participatory modelling framework that integrates information from interviews and discussions with farmers and consultants, with dynamic bio-economic models to answer complex questions on the allocation of limited resources at the farm business level. Interviews and discussions with farmers were used to: describe the farm business; identify relevant research questions; identify potential solutions; and discuss and learn from the whole-farm simulations. The simulations are done using a whole-farm, multi-field configuration of APSIM (APSFarm). APSFarm results were validated against farmers' experience. Once the model was accepted by the participating farmers as a fair representation of their farm business, the model was used to explore changes in the tactical or strategic management of the farm and results were then discussed to identify feasible options for improvement. Here we describe the modelling framework and present an example of the application of integrative whole farm system tools to answer relevant questions from an irrigated farm business case study near Dalby (151.27E - 27.17S), Queensland, Australia. Results indicated that even though cotton crops generates more farm income per hectare a more diversified rotation with less cotton would be relatively more profitable, with no increase in risk, as a more cotton dominated traditional rotation. Results are discussed in terms of the benefits and constraints from developing and applying more integrative approaches to represent farm businesses and their management in participatory research projects with the aim of designing more profitable and sustainable irrigated farming systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trichogramma Westwood egg parasitoids alone generally fail to suppress heliothine pests when released in established cotton-growing regions. Factors hindering their success include indiscriminate use of detrimental insecticides, compensation for minimal pest larval hatch due to their activity via reduced larval cannibalism or mortality in general, singly laid heliothine eggs avoiding detection and asynchronous development benefiting host over parasitoid. Yet, despite these limitations, relatively large Trichogramma pretiosum Riley populations pervade and effectively suppress Helicoverpa (Hardwick) pests in Australian Bt (Bacillus thuringiensis Berliner)-transgenic cotton, Gossypium hirsutum L., crops, especially in the Ord River Irrigation Area (ORIA) of tropical northern Australia, where their impact on the potentially resistant pest species, Helicoverpa armigera (Hubner), is considered integral to the local insecticide resistance management (IRM) strategy for continued, sustainable Bt-transgenic cotton production. When devoid of conventional insecticides, relatively warm and stable conditions of the early dry season in winter grown ORIA Bt-transgenic cotton crops are conducive to Trichogramma proliferation and biological control appears effective. Further, there is considerable scope to improve Trichogramma's biological control potential, in both the ORIA and established cotton-growing regions, via habitat manipulation. It is proposed that Trichogramma may prove equally effective in developing agricultural regions of monsoonal northern Australia, and that environmental constraints on Trichogramma survival, and those of other natural enemies, require due consideration prior to their successful application in biological control programs.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) is a common stored grain pest for which a wide range of suitable resources has been recorded. These beetles are facultatively fungivorous and their resource range may extend to fungi associated with non-grain resources (e.g. cotton seed) and other decaying plant matter. Little is known with respect to fungi in terms of resource location by these beetles in the field. We, therefore, conducted a series of experiments in laboratory arenas, glasshouse cages and the field to determine how beetles respond to grain resources in relation to cotton seed (together with its lint stubble and associated fungal flora). Results from the tests conducted in relatively small arenas and cages in the laboratory and glasshouse reveal that the responses of T. castaneum adults to food resources were twice as strong when walking as when flying (as measured by the proportion of the released beetles that were trapped). Also, a clear preference for linted cotton seeds was evident in walking T. castaneum, especially in small-scale arenas in the laboratory, where at least 60% of beetles released preferred linted cotton seeds over wheat and sorghum. Similarly, in cages (1 m3) they responded five times more strongly to linted cotton seed than to conventional grain resources. However, this pattern was not consistent with those obtained from field trapping over 20 m and the beetles did not show any particular preference to any of the resources tested above. Our results suggest a focus on walking beetles in trapping studies for population estimations and, for developing effective food-based trapping lures, the potential use of active volatiles from the fungi associated with linted cotton seed. © 2012 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested, in an olfactometer, whether or not Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) responds preferentially to the volatiles that emanate from the fungi associated with cotton [Gossypium hirsutum L. (Malvaceae)] seed over those that emanate from cereals, because cereals are usually portrayed as the primary resources of these beetles. Pairwise comparisons were conducted between cotton seed, wheat (Triticum aestivum L.), and sorghum [Sorghum bicolor (L.) Moench] (both Poaceae); volatiles were tested from intact seeds and from both water and ethanol extracts. The results demonstrate that T. castaneum is attracted more strongly to cotton seeds with its lint contaminated with fungi, than to the conventional resources of this species (i.e., wheat and sorghum). Further tests prove that it is the fungus on the lint that produces the active volatiles, because the beetles did not respond to sterilized cotton lint (i.e., without the fungi typically associated with it when cotton seed is stored). Tests with five fungal cultures (each representing an unidentified species that was isolated from the field-collected cotton lint) were variable across the cultures, with only one of them being significantly attractive to the beetles. The others were not attractive and one may even have repulsed the beetles. The results are consistent with the beetles having a strong ecological association with fungi and suggest it would be worth investigating the ecology of T. castaneum from this perspective. © 2012 The Netherlands Entomological Society.