933 resultados para Hemoglobin A, Glycosylated


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct electrochemistry of hemoglobin was observed in stable thin film composed of a natural lipid (egg-phosphatidylcholine) and hemoglobin on pyrolytic graphite (PG) electrode. Hemoglobin in lipid films shows thin layer electrochemistry behavior. The formal potential Edegrees' of hemoglobin in the lipid film was linearly varied with pH in the range from 3.5 to 7.0 with a slope of -46.4 mV pH(-1) Hemoglobin in the lipid film exhibited elegant catalytic activity for electrochemical reduction of H202, based which a unmediated biosensor for H2O2 was developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of rare-earth ion Eu3+ on hemoglobin (Hb) was studied by using two-dimensional Raman correlation spectroscopy. The results show that with the variation of Eu3+ concentrations as perturbation, the oxidation state of Hb and its spin state are both sensitive to the perturbation. Eu3+ added to Hb affects the oxidation and spin state synchronously. The four structure-sensitive bands of Hb are more accessible to the Eu3+ than other bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary and tertiary or quaternary structural changes in hemoglobin (HB) during an electroreduction process were studied by in situ circular dichroism (CD) spectroelectrochemistry with a long optical path thin-layer cell. By means of singular value decomposition least-squares analysis, CD spectra in the far-UV region give two similar a components with different CD intensity, indicating slight denaturation in the secondary structures due to the electric field effect. CD spectra in the Soret band show a R --> T transition of two quaternary structural components induced by electroreduction of the heme, which changes the redox states of the center ion from Fe3+ to Fe2+ and the coordination number from 6 to 5. The double logarithmic analysis shows that electroreduction of hemoglobin follows a chemical reaction with R --> T transition. Some parameters in the electrochemical process were obtained: formal potential, E-0t = -0.167 V; electrochemical kinetic overpotential, DeltaE(0) = -0.32 V; standard electrochemical reaction rate constant, k(0) = 1.79 x 10(-5) cm s(-1); product of electron transfer coefficient and electron number, alphan=0.14; and the equilibrium constant of R --> T transition, K-c = 9.0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synchronous fluorescence spectra of hemoglobin solutions are reported for the first rime. The main fluorescence peaks observed in the spectra are assigned. The effect of the concentration of hemoglobin solution on the spectra is studied. Characteristic fluorescence peaks due to the dimer and tetramer of hemoglobin molecules are recognized. (C) 1998 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circular dichroism (CD), fourier transform infrared (FTIR), and fluorescence spectroscopy were used to explore the effect of dimethyl sulfoxide (DMSO) on the structure and function of hemoglobin (Hb). The native tertiary structure was disrupted completely when the concentration of DMSO reached 50% (v/v), which was determined by loss of the characteristic Soret CD spectrum. Loss of the native tertiary structure could be mainly caused by breaking the hydrogen bonds, between the heme propionate groups and nearby surface amino acid residues, and by disorganizing the hydrophobic interior of this protein. Upon exposure of Hb to 52% DMSO for ca. 12 h in a D2O medium no significant change in 1652 cm(-1) band of the FTIR spectrum was produced, which demonstrated that alpha-helical structure predominated. When the concentration of DMSO increased to 57%: (1) the band at 1652 cm(-1) disappeared with the appearance of two new bands located at 1661 and 1648 cm(-1); (2) another new band at 1623 cm(-1) was attributed to the formation of intermolecular beta-sheet or aggregation, which was the direct consequence of breaking of the polypeptide chain by the competition of S=O groups in DMSO with C=O groups in amide bonds. Further increasing the DMSO concentration to 80%, the intensity at 1623 cm(-1) increased, and the bands at 1684, 1661 and 1648 cm(-1) shifted to 1688, 1664 and 1644 cm(-1), respectively. These changes showed that the native secondary structure of Hb was last and led to further aggregation and increase of the content of 'free' amide C=O groups. In pure DMSO solvent, the major band at 1664 cm(-1) indicated that almost all of both the intermolecular beta-sheet and any residual secondary structure were completely disrupted. The red shift of the fluorescence emission maxima showed that the tryptophan residues were exposed to a greater hydrophilic environment as the DMSO content increased. GO-binding experiment suggested that the biological function of Hb was disrupted seriously even if the content of DMSO was 20%. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ STM has been used to study the structure of hemoglobin(Hb) in two kinds of organic media. In hydrophobic organic solvent such as carbon tetrachloride, the structure of Hb is almost the same as in aqueous solution, similar to its native structure. However, when in hydrophilic organic solvent such as dimethylformamide, the two dimers of Hb molecule become separate and unfold to a certain extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct, quasi-reversible electrochemical reaction of horse heart hemoglobin without further purification was obtained for the first time at the indium oxide electrode when oxygen was removed from the solution and hemoglobin molecules. It was found that removing oxygen from the solution and hemoglobin molecules is an important factor for obtaining the quasi-reversible electrochemical reaction of hemoglobin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural characterization of folded and unfolded haemoglobin has been performed by scanning tunnelling microscopy (STM) for the first time. STM images show an oval-shaped pattern for the folded structure of this protein, and moreover two dimers consisting of one haemoglobin molecule can be clearly discerned. The dimensions of a folded molecule were determined as 6.4 x 5.4 x 0.7 nm(3), which are in good agreement with the known size obtained from X-ray analysis. We have found that unfolding of haemoglobin molecules on the surface of highly oriented pyrolytic graphite (HOPG) can be achieved by electrochemical deposition. The STM analysis indicates clearly that the tertiary structure of the protein was lost by electrochemical deposition, and most of the haemoglobin molecules were almost fully extended and exhibited a twisted rope-like or a rod-like aggregated structure. Our investigation demonstrates the capability of the electrochemical method in denaturing this redox protein and in preparing stable biological samples for use in STM imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemically polymerized azure A film electrode is reported. The resulting film on a platinum electrode surface was analyzed with electron spectroscopy for chemical analysis (ESCA). The heterogeneous electron transfer processes of hemoglobin at the polymerized azure A film electrode have been investigated using in situ UV-visible spectroelectrochemistry. The formal potential (E-degrees') and electron transfer number (n) of hemoglobin were calculated as E = 0.088 V versus NHE (standard deviation +/- 0.5, N = 4) and n = 1.8 (standard deviation +/- 0.5, N = 4). Exhaustive reduction and oxidation electrolysis are achieved in 80 and 380 seconds, respectively, during a potential step between -0.3 and +0.3 V. A formal heterogeneous electron-transfer rate constant (k(sh)) of 3.54(+/- 0.12) X 10(-6) cm/s and a transfer coefficient (alpha) of 0.28(+/- 0.01) were obtained by cyclic voltabsorptometry, which indicated that the poly-azure A film electrode is able to catalyze the direct reduction and oxidation of hemoglobin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thionine-containing chemically modified electrode (cme) was constructed with glassy carbon substrate by potential sweep oxidation, electrodeposition and adsorption procedures, and electrocatalytic reduction of hemoglobin was carried out and characterized at the cme under batch and flow conditions. Comparison of the catalytic response toward hemoglobir obtained at the cme was made mainly in terms of the potential dependence, the detectability and long-term stability. When used in flow injection analysis (FIA) experiments with the detector monitored at a constant potential applied at -0.35 V vs sce, detection limit of 0.15-1.5 pmol level of hemoglobin injected was achieved at the cme, with linear response range over 2 orders of magnitude. All the cme s retained more than 70% of their initial hemoglobin response level over 8 h of continuous service in the flow-through system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrodeposition of the phenothiazine mediator titrant toluidine blue onto a glassy carbon substrate at an appropriate potential was used to construct a toluidine blue chemically modified electrode (CME) exhibiting electrocatalytic reduction for myoglobin and hemoglobin. The CME catalyzed the hemoprotein electroreduction at the reduction potential of the mediator molecule. When the CME as used as a detector for flow injection analysis at a constant applied potential of -0.30 V vs. a saturated calomel electrode, it gave detection limits of 20 and 50 ng (1.2 and 0.78 pmol) injected myoglobin and hemoglobin, respectively, with a dynamic linear concentration range over 2 orders of magnitude. After a brief equilibration period, the CME retained nearly 90% of its initial myoglobin response over 8 hours of continuous exposure to the flow-through system.