974 resultados para Helmholtz Equation
Resumo:
The Zubarev equation of motion method has been applied to an anharmonic crystal of O( ,,4). All possible decoupling schemes have been interpreted in order to determine finite temperature expressions for the one phonon Green's function (and self energy) to 0()\4) for a crystal in which every atom is on a site of inversion symmetry. In order to provide a check of these results, the Helmholtz free energy expressions derived from the self energy expressions, have been shown to agree in the high temperature limit with the results obtained from the diagrammatic method. Expressions for the correlation functions that are related to the mean square displacement have been derived to 0(1\4) in the high temperature limit.
Resumo:
We have calculated the thermodynamic properties of monatomic fcc crystals from the high temperature limit of the Helmholtz free energy. This equation of state included the static and vibrational energy components. The latter contribution was calculated to order A4 of perturbation theory, for a range of crystal volumes, in which a nearest neighbour central force model was used. We have calculated the lattice constant, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the adiabatic and the isothermal bulk modulus, and the Gruneisen parameter, for two of the rare gas solids, Xe and Kr, and for the fcc metals Cu, Ag, Au, Al, and Pb. The LennardJones and the Morse potential were each used to represent the atomic interactions for the rare gas solids, and only the Morse potential was used for the fcc metals. The thermodynamic properties obtained from the A4 equation of state with the Lennard-Jones potential, seem to be in reasonable agreement with experiment for temperatures up to about threequarters of the melting temperature. However, for the higher temperatures, the results are less than satisfactory. For Xe and Kr, the thermodynamic properties calculated from the A2 equation of state with the Morse potential, are qualitatively similar to the A 2 results obtained with the Lennard-Jones potential, however, the properties obtained from the A4 equation of state are in good agreement with experiment, since the contribution from the A4 terms seem to be small. The lattice contribution to the thermal properties of the fcc metals was calculated from the A4 equation of state, and these results produced a slight improvement over the properties calculated from the A2 equation of state. In order to compare the calculated specific heats and bulk moduli results with experiment~ the electronic contribution to thermal properties was taken into account~ by using the free electron model. We found that the results varied significantly with the value chosen for the number of free electrons per atom.
Resumo:
Using data obtained by the high-resolution CRisp Imaging SpectroPolarimeter instrument on the Swedish 1 m Solar Telescope, we investigate the dynamics and stability of quiet-Sun chromospheric jets observed at the disk center. Small-scale features, such as rapid redshifted and blueshifted excursions, appearing as high-peed jets in the wings of the Hα line, are characterized by short lifetimes and rapid fading without any descending behavior. To study the theoretical aspects of their stability without considering their formation mechanism, we model chromospheric jets as twisted magnetic flux tubes moving along their axis, and use the ideal linear incompressible magnetohydrodynamic approximation to derive the governing dispersion equation. Analytical solutions of the dispersion equation indicate that this type of jet is unstable to Kelvin–Helmholtz instability (KHI), with a very short (few seconds) instability growth time at high upflow speeds. The generated vortices and unresolved turbulent flows associated with the KHI could be observed as a broadening of chromospheric spectral lines. Analysis of the Hα line profiles shows that the detected structures have enhanced line widths with respect to the background. We also investigate the stability of a larger-scale Hα jet that was ejected along the line of sight. Vortex-like features, rapidly developing around the jet’s boundary, are considered as evidence of the KHI. The analysis of the energy equation in the partially ionized plasma shows that ion–neutral collisions may lead to fast heating of the KH vortices over timescales comparable to the lifetime of chromospheric jets.
Resumo:
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.
Resumo:
The purpose of this research was to develop and test a multicausal model of the individual characteristics associated with academic success in first-year Australian university students. This model comprised the constructs of: previous academic performance, achievement motivation, self-regulatory learning strategies, and personality traits, with end-of-semester grades the dependent variable of interest. The study involved the distribution of a questionnaire, which assessed motivation, self-regulatory learning strategies and personality traits, to 1193 students at the start of their first year at university. Students' academic records were accessed at the end of their first year of study to ascertain their first and second semester grades. This study established that previous high academic performance, use of self-regulatory learning strategies, and being introverted and agreeable, were indicators of academic success in the first semester of university study. Achievement motivation and the personality trait of conscientiousness were indirectly related to first semester grades, through the influence they had on the students' use of self-regulatory learning strategies. First semester grades were predictive of second semester grades. This research provides valuable information for both educators and students about the factors intrinsic to the individual that are associated with successful performance in the first year at university.
Resumo:
In this paper, we consider a time fractional diffusion equation on a finite domain. The equation is obtained from the standard diffusion equation by replacing the first-order time derivative by a fractional derivative (of order $0<\alpha<1$ ). We propose a computationally effective implicit difference approximation to solve the time fractional diffusion equation. Stability and convergence of the method are discussed. We prove that the implicit difference approximation (IDA) is unconditionally stable, and the IDA is convergent with $O(\tau+h^2)$, where $\tau$ and $h$ are time and space steps, respectively. Some numerical examples are presented to show the application of the present technique.
Resumo:
In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.
Resumo:
In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.