784 resultados para Health models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survey-based health research is in a boom phase following an increased amount of health spending in OECD countries and the interest in ageing. A general characteristic of survey-based health research is its diversity. Different studies are based on different health questions in different datasets; they use different statistical techniques; they differ in whether they approach health from an ordinal or cardinal perspective; and they differ in whether they measure short-term or long-term effects. The question in this paper is simple: do these differences matter for the findings? We investigate the effects of life-style choices (drinking, smoking, exercise) and income on six measures of health in the US Health and Retirement Study (HRS) between 1992 and 2002: (1) self-assessed general health status, (2) problems with undertaking daily tasks and chores, (3) mental health indicators, (4) BMI, (5) the presence of serious long-term health conditions, and (6) mortality. We compare ordinal models with cardinal models; we compare models with fixed effects to models without fixed-effects; and we compare short-term effects to long-term effects. We find considerable variation in the impact of different determinants on our chosen health outcome measures; we find that it matters whether ordinality or cardinality is assumed; we find substantial differences between estimates that account for fixed effects versus those that do not; and we find that short-run and long-run effects differ greatly. All this implies that health is an even more complicated notion than hitherto thought, defying generalizations from one measure to the others or one methodology to another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter describes an evidence-based programme called the Resourceful Adolescent Program (RAP), which has been successful in building resilience in young people to prevent depressive symptoms developing.The programme adopts a strengths-focused approach. It aims to build a range of coping resources that foster teenagers’ abilities to maintain a positive sense of self and regulate emotions in the face of the vicissitudes of everyday struggles and difficult life events.This groupbased programme can be implemented routinely in schools or by counselling professionals as an early intervention or prevention programme. While there is no universal definition, ‘resilience’ generally means the process of avoiding the negative trajectories associated with exposure to risk factors (Fergus and Zimmerman, 2005). Current models of resilience are also very clear that there ‘are many pathways to resilience’ (Bonanno, 2004) and there is no

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonal patterns have been found in a remarkable range of health conditions, including birth defects, respiratory infections and cardiovascular disease. Accurately estimating the size and timing of seasonal peaks in disease incidence is an aid to understanding the causes and possibly to developing interventions. With global warming increasing the intensity of seasonal weather patterns around the world, a review of the methods for estimating seasonal effects on health is timely. This is the first book on statistical methods for seasonal data written for a health audience. It describes methods for a range of outcomes (including continuous, count and binomial data) and demonstrates appropriate techniques for summarising and modelling these data. It has a practical focus and uses interesting examples to motivate and illustrate the methods. The statistical procedures and example data sets are available in an R package called ‘season’. Adrian Barnett is a senior research fellow at Queensland University of Technology, Australia. Annette Dobson is a Professor of Biostatistics at The University of Queensland, Australia. Both are experienced medical statisticians with a commitment to statistical education and have previously collaborated in research in the methodological developments and applications of biostatistics, especially to time series data. Among other projects, they worked together on revising the well-known textbook "An Introduction to Generalized Linear Models," third edition, Chapman Hall/CRC, 2008. In their new book they share their knowledge of statistical methods for examining seasonal patterns in health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The effect of patient education on reducing stroke has had mixed effects, raising questions about how to achieve optimal benefit. Because past evaluations have typically lacked an appropriate theoretical base, the design of past research may have missed important effects. --------- Method: This study used a social cognitive framework to identify variables that might change in response to education. A mixed design was used to evaluate two approaches to an intervention, both of which included education. Fifty seniors completed a measure of stroke knowledge and beliefs twice: before and after an intervention that was either standard (educational brochure plus activities that were not about stroke) or enhanced (educational brochure plus activities designed to enhance beliefs about stroke). Outcome measures were health beliefs, intention to exercise to reduce stroke, and stroke knowledge. --------- Results: Selected beliefs changed significantly over time but not differentially across conditions. Beliefs that changed were (a) perceived susceptibility to stroke and (b) perceived benefit of exercise to reduce risk. Benefit beliefs, in particular, were strongly and positively associated with intention to exercise. -------- Conclusion: Findings suggest that basic approaches to patient education may influence health beliefs. More effective stroke prevention programs may result from continued consideration of the role of health beliefs in such programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article provides a critical review of the literature relevant to the conceptual foundations of health promoting palliative care. It explores the separate emergence and evolution of palliative care and health promotion as distinct concerns in health care, and reviews the early considerations given to their potential convergence. Finally, this article examines the proposal of health promoting palliative care as a specific approach to providing end of life care through a social model of palliative care. Research is needed to explore the impact for communities, health care services and policy when such an approach is implemented within palliative care organisations.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A national-level safety analysis tool is needed to complement existing analytical tools for assessment of the safety impacts of roadway design alternatives. FHWA has sponsored the development of the Interactive Highway Safety Design Model (IHSDM), which is roadway design and redesign software that estimates the safety effects of alternative designs. Considering the importance of IHSDM in shaping the future of safety-related transportation investment decisions, FHWA justifiably sponsored research with the sole intent of independently validating some of the statistical models and algorithms in IHSDM. Statistical model validation aims to accomplish many important tasks, including (a) assessment of the logical defensibility of proposed models, (b) assessment of the transferability of models over future time periods and across different geographic locations, and (c) identification of areas in which future model improvements should be made. These three activities are reported for five proposed types of rural intersection crash prediction models. The internal validation of the model revealed that the crash models potentially suffer from omitted variables that affect safety, site selection and countermeasure selection bias, poorly measured and surrogate variables, and misspecification of model functional forms. The external validation indicated the inability of models to perform on par with model estimation performance. Recommendations for improving the state of the practice from this research include the systematic conduct of carefully designed before-and-after studies, improvements in data standardization and collection practices, and the development of analytical methods to combine the results of before-and-after studies with cross-sectional studies in a meaningful and useful way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishing a nationwide Electronic Health Record system has become a primary objective for many countries around the world, including Australia, in order to improve the quality of healthcare while at the same time decreasing its cost. Doing so will require federating the large number of patient data repositories currently in use throughout the country. However, implementation of EHR systems is being hindered by several obstacles, among them concerns about data privacy and trustworthiness. Current IT solutions fail to satisfy patients’ privacy desires and do not provide a trustworthiness measure for medical data. This thesis starts with the observation that existing EHR system proposals suer from six serious shortcomings that aect patients’ privacy and safety, and medical practitioners’ trust in EHR data: accuracy and privacy concerns over linking patients’ existing medical records; the inability of patients to have control over who accesses their private data; the inability to protect against inferences about patients’ sensitive data; the lack of a mechanism for evaluating the trustworthiness of medical data; and the failure of current healthcare workflow processes to capture and enforce patient’s privacy desires. Following an action research method, this thesis addresses the above shortcomings by firstly proposing an architecture for linking electronic medical records in an accurate and private way where patients are given control over what information can be revealed about them. This is accomplished by extending the structure and protocols introduced in federated identity management to link a patient’s EHR to his existing medical records by using pseudonym identifiers. Secondly, a privacy-aware access control model is developed to satisfy patients’ privacy requirements. The model is developed by integrating three standard access control models in a way that gives patients access control over their private data and ensures that legitimate uses of EHRs are not hindered. Thirdly, a probabilistic approach for detecting and restricting inference channels resulting from publicly-available medical data is developed to guard against indirect accesses to a patient’s private data. This approach is based upon a Bayesian network and the causal probabilistic relations that exist between medical data fields. The resulting definitions and algorithms show how an inference channel can be detected and restricted to satisfy patients’ expressed privacy goals. Fourthly, a medical data trustworthiness assessment model is developed to evaluate the quality of medical data by assessing the trustworthiness of its sources (e.g. a healthcare provider or medical practitioner). In this model, Beta and Dirichlet reputation systems are used to collect reputation scores about medical data sources and these are used to compute the trustworthiness of medical data via subjective logic. Finally, an extension is made to healthcare workflow management processes to capture and enforce patients’ privacy policies. This is accomplished by developing a conceptual model that introduces new workflow notions to make the workflow management system aware of a patient’s privacy requirements. These extensions are then implemented in the YAWL workflow management system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Leisure-time physical activity (LTPA) shows promise for reducing the risk of poor mental health in later life, although gender- and age-specific research is required to clarify this association. This study examined the concurrent and prospective relationships between both LTPA and walking with mental health in older women. Methods Community-dwelling women aged 73–78 years completed mailed surveys in 1999, 2002 and 2005 for the Australian Longitudinal Study on Women's Health. Respondents reported their weekly minutes of walking, moderate LTPA and vigorous LTPA. Mental health was defined as the number of depression and anxiety symptoms, as assessed with the Goldberg Anxiety and Depression Scale (GADS). Multivariable linear mixed models, adjusted for socio-demographic and health-related variables, were used to examine associations between five levels of LTPA (none, very low, low, intermediate and high) and GADS scores. For women who reported walking as their only LTPA, associations between walking and GADS scores were also examined. Women who reported depression or anxiety in 1999 were excluded, resulting in data from 6653 women being included in these analyses. Results Inverse dose–response associations were observed between both LTPA and walking with GADS scores in concurrent and prospective models (p<0.001). Even low levels of LTPA and walking were associated with lowered scores. The lowest scores were observed in women reporting high levels of LTPA or walking. Conclusion The results support an inverse dose–response association between both LTPA and walking with mental health, over 3 years in older women without depression or anxiety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Socio-economic gradients in cardiovascular disease (CVD) and diabetes have been found throughout the developed world and there is some evidence to suggest that these gradients may be steeper for women. Research on social gradients in biological risk factors for CVD and diabetes has received less attention and we do not know the extent to which gradients in biomarkers vary for men and women. We examined the associations between two indicators of socio-economic position (education and household income) and biomarkers of diabetes and cardiovascular disease (CVD) for men and women in a national, population-based study of 11,247 Australian adults. Multi-level linear regression was used to assess associations between education and income and glucose tolerance, dyslipidaemia, blood pressure (BP) and waist circumference before and after adjustment for behaviours (diet, smoking, physical activity, TV viewing time, and alcohol use). Measures of glucose tolerance included fasting plasma glucose and insulin and the results of a glucose tolerance test (2 h glucose) with higher levels of each indicating poorer glucose tolerance. Triglycerides and High Density Lipoprotein (HDL) Cholesterol were used as measures of dyslipidaemia with higher levels of the former and lower levels of the later being associated with CVD risk. Lower education and low income were associated with higher levels of fasting insulin, triglycerides and waist circumference in women. Women with low education had higher systolic and diastolic BP and low income women had higher 2 h glucose and lower HDL cholesterol. With only one exception (low income and systolic BP), all of these estimates were reduced by more than 20% when behavioural risk factors were included. Men with lower education had higher fasting plasma glucose, 2 h glucose, waist circumference and systolic BP and, with the exception of waist circumference, all of these estimates were reduced when health behaviours were included in the models. While low income was associated with higher levels of 2-h glucose and triglycerides it was also associated with better biomarker profiles including lower insulin, waist circumference and diastolic BP. We conclude that low socio-economic position is more consistently associated with a worse profile of biomarkers for CVD and diabetes for women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crash prediction models are used for a variety of purposes including forecasting the expected future performance of various transportation system segments with similar traits. The influence of intersection features on safety have been examined extensively because intersections experience a relatively large proportion of motor vehicle conflicts and crashes compared to other segments in the transportation system. The effects of left-turn lanes at intersections in particular have seen mixed results in the literature. Some researchers have found that left-turn lanes are beneficial to safety while others have reported detrimental effects on safety. This inconsistency is not surprising given that the installation of left-turn lanes is often endogenous, that is, influenced by crash counts and/or traffic volumes. Endogeneity creates problems in econometric and statistical models and is likely to account for the inconsistencies reported in the literature. This paper reports on a limited-information maximum likelihood (LIML) estimation approach to compensate for endogeneity between left-turn lane presence and angle crashes. The effects of endogeneity are mitigated using the approach, revealing the unbiased effect of left-turn lanes on crash frequency for a dataset of Georgia intersections. The research shows that without accounting for endogeneity, left-turn lanes ‘appear’ to contribute to crashes; however, when endogeneity is accounted for in the model, left-turn lanes reduce angle crash frequencies as expected by engineering judgment. Other endogenous variables may lurk in crash models as well, suggesting that the method may be used to correct simultaneity problems with other variables and in other transportation modeling contexts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is important to examine the nature of the relationships between roadway, environmental, and traffic factors and motor vehicle crashes, with the aim to improve the collective understanding of causal mechanisms involved in crashes and to better predict their occurrence. Statistical models of motor vehicle crashes are one path of inquiry often used to gain these initial insights. Recent efforts have focused on the estimation of negative binomial and Poisson regression models (and related deviants) due to their relatively good fit to crash data. Of course analysts constantly seek methods that offer greater consistency with the data generating mechanism (motor vehicle crashes in this case), provide better statistical fit, and provide insight into data structure that was previously unavailable. One such opportunity exists with some types of crash data, in particular crash-level data that are collected across roadway segments, intersections, etc. It is argued in this paper that some crash data possess hierarchical structure that has not routinely been exploited. This paper describes the application of binomial multilevel models of crash types using 548 motor vehicle crashes collected from 91 two-lane rural intersections in the state of Georgia. Crash prediction models are estimated for angle, rear-end, and sideswipe (both same direction and opposite direction) crashes. The contributions of the paper are the realization of hierarchical data structure and the application of a theoretically appealing and suitable analysis approach for multilevel data, yielding insights into intersection-related crashes by crash type.