994 resultados para Hardness test


Relevância:

60.00% 60.00%

Publicador:

Resumo:

More than 3000 years ago, men began quenching and tem­pering tools to improve their physical properties. The an­cient people found that iron was easier to shape and form in a heated condition. Charcoal was used as the fuel, and when the shaping process was completed, the smiths cooled the piece in the most obvious way, quenching in water. Quite un­intentionally, these people stumbled on the process for im­proving the properties of iron, and the art of blacksmithing began.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En esta tesis se desarrolla una metodología alternativa para la determinación de la dureza Brinell a partir de imágenes obtenidas mediante microscopía confocal, que se ha mostrado robusta para mejorar los resultados de medición del diámetro en condiciones de reproducibilidad. Las validaciones realizadas evidencian su posibilidad real de implementación, especialmente para la certificación de patrones de dureza. Los estudios experimentales realizados ponen de manifiesto que la medición del diámetro de una huella de dureza Brinell, siguiendo la metodología tradicional, depende de la posición del patrón, de las características del equipo empleado y del propio operador. Dicha medida resulta crítica y las dificultades para identificar el borde de la huella incorporan a menudo una fuente adicional de incertidumbre difícil de soslayar. En esta investigación se han desarrollado dos modelos matemáticos que permiten identificar de forma unívoca el diámetro de la huella en el punto donde se produce el límite de contacto entre el indentador y el material de la probeta durante la realización del ensayo. Ambos modelos han sido implementados en Matlab® y se ha verificado su validez mediante datos sintéticos. Asimismo, se ha realizado una validación experimental sobre patrones de dureza certificados, empleando un microscopio confocal marca Leica, modelo DCM 3D disponible en el Laboratorio de Investigación de Materiales de Interés Tecnológico (LIMIT) de la Escuela Técnica Superior de Ingeniería y Diseño Industrial de la Universidad Politécnica de Madrid (ETSIDI – UPM). Dicha validación ha puesto de manifiesto la utilidad de esta nueva metodología por cuanto permite caracterizar las huellas, estimar las incertidumbres de medida y garantizar la trazabilidad metrológica de los resultados. ABSTRACT This PhD thesis presents an alternative methodology to determine the Brinell hardness from the images obtained by confocal microscopy that has proved to be robust to improve the results of indentation diameter measurements in reproducibility conditions. The validations carried out show the real possibility of its implementation, especially for calibration of hardness reference blocks. Experimental studies performed worldwide show that the measurement of the indentation diameter in a Brinell hardness test depends, when the traditional methodology is applied, on the position of the test block, the equipment characteristics and the operator. This measurement is critical and the difficulties to identify the edge of the indentation often bring an additional source of uncertainty with them that is hard to avoid. In this research two specific mathematical models have been developed to identify unambiguously the indentation diameter at the point where the edge of the boundary between the indenter and the test block is found during the test. Both models have been implemented on Matlab® and their validity has been verified by synthetic data An additional experimental validation with calibrated hardness reference blocks has been carried out using a Leica-brand confocal microscope, model DCM 3D, available in the Laboratory for Research on Materials of Technological Interest (LIMIT in its Spanish acronym) of the Escuela Técnica Superior de Ingeniería y Diseño Industrial de la Universidad Politécnica de Madrid (ETSIDI-UPM). This validation has shown the utility of this new methodology since it allows to characterize the indentation, to estimate the measurement uncertainties and to ensure the metrological traceability of the results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nas últimas décadas Friction Surfacing despertou bastante interesse por permitir revestir metais no estado sólido desenvolvendo-se a temperaturas inferiores às de fusão, evitando assim as afetações que dai advém. No presente trabalho existem dois blocos principais, um primeiro onde se caraterizou o material do braço de suspensão do M113, e um segundo onde se produziram revestimentos recorrendo às três técnicas de revestimento em estudo (FS, Fios Fluxados e SER), com o objetivo de se proceder ao seu estudo e comparação. No processo de caraterização do aço do braço, foram realizados diversos ensaios, dos quais se salientam os ensaios de durezas Vickers e os ensaios de faiscamento, concluindo-se que o aço que mais se assemelha com o do braço é o AISI 4140. Para a caraterização dos revestimentos foram definidos diferentes tipos de ensaios, Metalúrgicos e Mecânicos, com a finalidade principal de abranger uma ampla gama de solicitações semelhantes às que são requeridas ao componente em serviço. Nos ensaios Metalúrgicos foram avaliadas as ligações, a existência de defeitos, as ZTA e as alterações metalográficas. A avaliação das propriedades mecânicas foi obtida através de ensaios de dureza, desgaste, flexão em três pontos e Push-Pull. Da realização destes ensaios verificou-se que os revestimentos obtidos por FS apresentam melhores propriedades, tanto Metalúrgicas como Mecânicas Por fim, foi elaborada uma avaliação dos custos operacionais envolvidos na realização da reparação de um braço de suspensão, concluindo-se que FS, apesar de apresentar os revestimentos com melhores propriedades, é ainda uma tecnologia pouco viável economicamente, fato que se deve á baixa eficiência apresentada.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis focuses on the investigation of the abrasion resistance of fibre reinforced concrete floors at both the macro and micro levels. A literature review of the available literature concerning subjects allied to the current project is included. This highlights themes relevant to wear mechanisms and the factors influencing it: factors that affect the abrasion resistance of concrete and several test methods for assessing it; and the historical development of fibres and the properties of different fibre types and their influence on concrete. Three accelerated abrasion testers were compared and critically discussed for their suitability for assessing the abrasion resistance of concrete floors. Based on the experimental findings one accelerated abrasion apparatus was selected as more appropriate to be used for carrying out the main investigations. The laboratory programme that followed was undertaken to investigate the influence of various material and construction factors on abrasion resistance. These included mix variations (w/c ratio), fibre reinforcement, geometry, type and volume, curing method and superplasticizing agents. The results clearly show that these factors significantly affected abrasion resistance and several mechanisms were presumed to explain and better understand these observations. To verify and understand these mechanisms that are accountable for the breakdown of concrete slabs, the same concrete specimens that were used for the macro-study, were also subjected to microstructutural investigations using techniques such as Microhardness examination, Mercury intrusion porosimetry and Petrographic examination. It has been found that the abrasion resistance of concrete is primarily dependent on the microstructure and porosity of the concrete nearest to the surface. The feasibility of predicting the abrasion resistance of fibre reinforced concrete floors by indirect and non-destructive methods was investigated using five methods that have frequently been used for assessing the quality of concrete. They included the initial surface absorption test, the impact test, ball cratering, the scratch test and the base hardness test. The impact resistance (BRE screed tester) and scratch resistance (Base hardness tester) were found to be the most sensitive to factors affecting abrasion resistance and hence are considered to be the most appropriate testing techniques. In an attempt to develop an appropriate method for assessing the abrasion resistance of heavy-duty industrial concrete floors, it was found that the presence of curing/sealing compound on the concrete surface at the time of accelerated abrasion testing produces inappropriate results. A preliminary investigation in the direction of modifying the Aston accelerated abrasion tester has been carried out and a more aggressive head has been developed and is pending future research towards standardisation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este trabajo de titulación se detallan los aspectos más relevantes relacionados a la investigación, formulación y elaboración de uno de los placeres más agradables en la vida cotidiana de cualquier persona como lo es el chocolate. Cada uno de los chocolates realizados tiene como particularidad el estar endulzado con edulcorantes no calóricos como: stevia, sucralosa y jarabe de yacón, disminuyendo así el contenido de calorías presentes en los mismos. Entre los tres chocolates elaborados, la mejor formulación fue seleccionada mediante una prueba de cata resultando ganador el chocolate endulzado con jarabe de yacón, debido a que posee las mejores características sensoriales resaltando principalmente el dulzor y el sabor. Para comprobar que la mejor formulación cumple con los estándares de calidad de las normas INEN de chocolates se realizó un análisis físico-químico y se corroboraron estos resultados con un laboratorio certificado por parte del Servicio de Acreditación Ecuatoriano (SAE). Los resultados obtenidos determinaron que el porcentaje de grasa es menor a los chocolates existentes en el mercado. Además se realizaron pruebas de dureza para analizar las propiedades de textura presentes en el chocolate. Destacando que el chocolate endulzado con jarabe de yacón puede ser consumido por personas diabéticas y no diabéticas, al no tener en su formulación sacarosa como endulzante principal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Micro-scale abrasion (ball cratering) tests were performed with different combinations of ball and bulk specimen materials, under different test conditions, such as load and abrasive slurry concentration. Wear modes were classified into two types: with rolling particle motion and with grooving particle motion. Wear rates observed with rolling particle motion were relatively insensitive to test conditions, whereas with grooving motion they varied much more. It is suggested that rolling abrasion is therefore a more appropriate mode if reproducible test results are desired. The motion of the abrasive particles can be reliably predicted from the knowledge of hardnesses and elastic properties of the ball and the specimen, and from the normal load and the abrasive slurry concentration. General trends in wear resistance measured in the micro-scale abrasion test with rolling particle motion are similar to those reported in tests with fixed abrasives with sliding particle motion, although the variation in wear resistance with hardness is significantly smaller. © 2004 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: There is a recognised relationship between dry weather conditions and increased risk of anterior cruciate ligament (ACL) injury. Previous studies have identified 28 day evaporation as an important weather-based predictor of non-contact ACL injuries in professional Australian Football League matches. The mechanism of non-contact injury to the ACL is believed to increased traction and impact forces between footwear and playing surface. Ground hardness and the amount and quality of grass are factors that would most likely influence this and are inturn, related to the soil moisture content and prevailing weather conditions. This paper explores the relationship between soil moisture content, preceding weather conditions and the Clegg Soil Impact Test (CSIT) which is an internationally recognised standard measure of ground hardness for sports fields. Methodology: The 2.25 kg Clegg Soil Impact Test and a pair of 12 cm soil moisture probes were used to measure ground hardness and percentage moisture content. Five football fields were surveyed at 13 prescribed sites just before seven football matches from October 2008 to January 2009 (an FC Women’s WLeague team). Weather conditions recorded at the nearest weather station were obtained from the Bureau of Meteorology website and total rainfall less evaporation was calculated for 7 and 28 days prior to each match. All non-contact injuries occurring during match play and their location on the field were recorded. Results/conclusions: Ground hardness varied between CSIT 5 and 17 (x10G) (8 is considered a good value for sports fields). Variations within fields were typically greatest in the centre and goal areas. Soil moisture ranged from 3 to 40% with some fields requiring twice the moisture content of others to maintain similar CSIT values. There was a non-linear, negative relationship for ground hardness versus moisture content and a linear relationship with weather (R2, of 0.30 and 0.34, respectively). Three non-contact ACL injuries occurred during the season. Two of these were associated with hard and variable ground conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-indentation test at scales on the order of sub-micron has shown that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. Simultaneously, at micron or sub-micron scale, the material microstructure size also has an important influence on the measured hardness. This kind of effect, such as the crystal grain size effect, thin film thickness effect, etc., is called the geometrical effect by here. In the present research, in order to investigate the size effect and the geometrical effect, the micro-indentation experiments are carried out respectively for single crystal copper and aluminum, for polycrystal aluminum, as well as for a thin film/substrate system, Ti/Si3N4. The size effect and geometrical effect are displayed experimentally. Moreover, using strain gradient plasticity theory, the size effect and the geometrical effect are simulated. Through comparing experimental results with simulation results, length-scale parameter appearing in the strain gradient theory for different cases is predicted. Furthermore, the size effect and the geometrical effect are interpreted using the geometrically necessary dislocation concept and the discrete dislocation theory. Member Price: $0; Non-Member Price: $25.00

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present research, microstructures of the surface-nanocrystalline Al alloy material are observed and measured based on the transmission electron microscopy (TEM) technique, and the corresponding mechanical behaviors are investigated experimentally and theoretically. In the experimental research, the nanoindentation test method is used, and the load and microhardness curves are measured, which strongly depend on the grain size and grain size nonuniformity. Two kinds of the nanoindentation test methods are adopted: the randomly selected loading point method and the continuous stiffness method. In the theoretical modeling, based on the microstructure characteristics of the surface-nanocrystalline Al alloy material, a dislocation pile-up model considering the grain size effect and based on the Mott theory is presented and used. The hardness-indent depth curves are predicted and modeled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dimensional and finite element analyses were used to analyze the relationship between the mechanical properties and instrumented indentation response of materials. Results revealed the existence of a functional dependence of (engineering yield strength sigma(E,y) + engineering tensile strength sigma(E,b))/Oliver & Pharr hardness on the ratio of reversible elastic work to total work obtained from an indentation test. The relationship links up the Oliver & Pharr hardness with the material strengths, although the Oliver & Pharr hardness may deviate from the true hardness when sinking in or piling up occurs. The functional relationship can further be used to estimate the SUM sigma(E,y) + sigma(E,b) according to the data of an instrumented indentation test. The sigma(E,y) + sigma(E,b) value better reflects the strength of a material compared to the hardness value alone. The method was shown to be effective when applied to aluminum alloys. The relationship can further be used to estimate the fatigue limits, which are usually obtained from macroscopic fatigue tests in different modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-indentation tests at scales of the order of sub-micron show that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. At the same time, at micron or sub-micron scale, another effect, which is referred to as the geometrical size effects such as crystal grain size effect, thin film thickness effect, etc., also influences the measured material hardness. However, the trends are at odds with the size-independence implied by the conventional elastic-plastic theory. In the present research, the strain gradient plasticity theory (Fleck and Hutchinson) is used to model the composition effects (size effect and geometrical effect) for polycrystal material and metal thin film/ceramic substrate systems when materials undergo micro-indenting. The phenomena of the "pile-up" and "sink-in" appeared in the indentation test for the polycrystal materials are also discussed. Meanwhile, the micro-indentation experiments for the polycrystal Al and for the Ti/Si_3N_4 thin film/substrate system are carried out. By comparing the theoretical predictions with experimental measurements, the values and the variation trends of the micro-scale parameter included in the strain gradient plasticity theory are predicted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some factors that affect the experimental results in nanoindentation tests such as the contact depth, contact area, load and loading duration are analyzed in this article. Combining with the results of finite element numerical simulation, we find that the creep property of the tested material is one of the important factors causing the micron indentation hardness descending with the increase of indentation depth. The analysis of experimental results with different indentation depths demonstrates that the hardness decrease can be bated if the continuous stiffness measurement technique is not adopted; this indicates that the test method itself may also be one of the factors causing the hardness being descended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evaporation of exoplanetary atmospheres is thought to be driven by high-energy irradiation. However, the actual mass loss rates are not well constrained. Co-I Kipping has recently discovered that the star KOI-314, an M1V dwarf at 65 pc distance, is orbited by two earth-sized planets, the inner one of them rocky and the outer one gaseous (P_orb = 14d and 23d). Other recent works have shown an abundance of small rocky planets in very close orbits around their host stars, suggesting that the stellar high-energy irradiation evaporates away gaseous envelopes. KOI-314 is the first nearby system in which earth-sized planets of both types are detected, allowing us to constrain the efficiency of planetary evaporation if the stellar X-ray irradiation is measured. We therefore propose a 10 ks Chandra ACIS-S pointing to determine the stellar X-ray luminosity and hardness ratio. The accuracy of the orbital solution decreases quickly due to Transit-Timing Variations, which is why we ask for DDT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples of Norway spruce wood were impregnated with a water-soluble melamine formaldehyde resin by using short-term vacuum treatment and long-term immersion, respectively. By means of Fourier transform infrared (FTIR) spectroscopy and UV microspectrophotometry, it was shown that only diffusion during long-term immersion leads to sufficient penetration of melamine resin into the wood structure, the flow of liquids in Norway spruce wood during vacuum treatment being greatly hindered by aspirated pits. After an immersion in aqueous melamine resin solution for 3 days, the resin had penetrated to a depth > 4 mm, which, after polymerization of the resin, resulted in an improvement of hardness comparable to the hardwood beech. A finite element model describing the effect of increasing depth of modification on hardness demonstrated that under the test conditions chosen for this study, a minimum impregnation depth of 2 mm is necessary to achieve an optimum increase in hardness. (C) 2004 Wiley Periodicals, Inc.