786 resultados para Handgrip strength
Resumo:
Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.
Resumo:
Top screw pullout occurs when the screw is under too much axial force to remain secure in the vertebral body. In vitro biomechanical pullout tests are commonly done to find the maximum fixation strength of anterior vertebral body screws. Typically, pullout tests are done instantaneously where the screw is inserted and then pulled out immediately after insertion. However, bone is a viscoelastic material so it shows a time dependent stress and strain response. Because of this property, it was hypothesised that creep occurs in the vertebral trabecular bone due to the stress caused by the screw. The objective of this study was therefore to determine whether the axial pullout strength of anterior vertebral body screws used for scoliosis correction surgery changes with time after insertion. This study found that there is a possible relationship between pullout strength and time; however more testing is required as the sample numbers were quite small. The design of the screw is made with the knowledge of the strength it must obtain. This is important to prevent such occurrences as top screw pullout. If the pullout strength is indeed decreased due to creep, the design of the screw may need to be changed to withstand greater forces.
Resumo:
Computer aided joint replacement surgery has become very popular during recent years and is being done in increasing numbers all over the world. The accuracy of the system depends to a major extent, on accurate registration and immobility of the tracker attachment devices to the bone. This study was designed to asses the forces needed to displace the tracker attachment devices in the bone simulators. Bone simulators were used to maintain the uniformity of the bone structure during the study. The fixation devices tested were 3mm diameter self drilling, self tapping threaded pin, 4mm diameter self tapping cortical threaded pin, 5mm diameter self tapping cancellous threaded pin and a triplanar fixation device ‘ortholock’ used with three 3mm pins. All the devices were tested for pull out, translational and rotational forces in unicortical and bicortical fixation modes. Also tested was the normal bang strength and forces generated by leaning on the devices. The forces required to produce translation increased with the increasing diameter of the pins. These were 105N, 185N, and 225N for the unicortical fixations and 130N, 200N, 225N for the bicortical fixations for 3mm, 4mm and 5mm diameter pins respectively. The forces required to pull out the pins were 1475N, 1650N, 2050N for the unicortical, 1020N, 3044N and 3042N for the bicortical fixated 3mm, 4mm and 5mm diameter pins. The ortholock translational and pull out strength was tested to 900N and 920N respectively and still it did not fail. Rotatory forces required to displace the tracker on pins was to the magnitude of 30N before failure. The ortholock device had rotational forces applied up to 135N and still did not fail. The manual leaning forces and the sudden bang forces generated were of the magnitude of 210N and 150N respectively. The strength of the fixation pins increases with increasing diameter from three to five mm for the translational forces. There is no significant difference in pull out forces of four mm and five mm diameter pins though it is more that the three mm diameter pins. This is because of the failure of material at that stage rather than the fixation device. The rotatory forces required to displace the tracker are very small and much less that that can be produced by the surgeon or assistants in single pins. Although the ortholock device was tested to 135N in rotation without failing, one has to be very careful not to put any forces during the operation on the tracker devices to ensure the accuracy of the procedure.
Resumo:
The elaborated intrusion (EI) theory of desire (Kavanagh, Andrade, & May, 2005) attributes the motivational force of cravings to cognitive elaboration, including imagery, of apparently spontaneous thoughts that intrude into awareness. We report a questionnaire study in which respondents rated a craving for food or drink. Questionnaire items derived from EI theory formed a single factor alongside factors for anticipated reward/relief, resistance, and opportunity. In a multiple regression predicting strength of craving, the first three factors accounted for 36% of the variance. Opportunity did not enter the model. In a second study, the difference between individuals' strong and weak cravings to take part in a sporting activity was shown to be related to visual, auditory, and general imagery, and to anticipated reward or relief from engaging in the activity. Implications for treatment of craving-related disorders are discussed in the light of these results and of other research indicating that interference with imagery can reduce the strength of craving.
Resumo:
The flexural capacity of of a new cold-formed hollow flange channel section known as LiteSteel beam (LSB) is limited by lateral distortional buckling for intermediate spans, which is characterised by simultaneous lateral deflection, twist and web distortion. Recent research has developed suitable design rules for the member capacity of LSBs. However, they are limited to a uniform moment distribution that rarely exists in practice. Many steel design codes have adopted equivalent uniform moment distribution factors to accommodate the effect of non-uniform moment distributions in design. But they were derived mostly based on the data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The effect of moment distribution for LSBs, and the suitability of the current steel design code rules to include this effect for LSBs are not yet known. This paper presents the details of a research study based on finite element analyses of the lateral buckling strength of simply supported LSBs subject to moment gradient effects. It also presents the details of a number of LSB lateral buckling experiments undertaken to validate the results of finite element analyses. Finally, it discusses the suitability of the current design methods, and provides design recommendations for simply supported LSBs subject to moment gradient effects.
Resumo:
This paper presents the details of experimental and numerical studies on the shear behaviour of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB). The LSB sections are produced by a patented manufacturing process involving simultaneous cold-forming and electric resistance welding. It has a unique shape of a channel beam with two rectangular hollow flanges. Recent research has demonstrated the presence of increased shear capacity of LSBs due to the additional fixity along the web to flange juncture, but the current design rules ignore this effect. Therefore they were modified by including a higher elastic shear buckling coefficient. In the present study, the ultimate shear capacity results obtained from the experimental and numerical studies of 10 different LSB sections were compared with the modified shear capacity design rules. It was found that they are still conservative as they ignore the presence of post-buckling strength. Therefore the design rules were further modified to include the available post-buckling strength. Suitable design rules were also developed under the direct strength method format. This paper presents the details of this study and the results including the final design rules for the shear capacity of LSBs.
Resumo:
Background: It has been proposed that adenosine triphosphate (ATP) released from red blood cells (RBCs) may contribute to the tight coupling between blood flow and oxygen demand in contracting skeletal muscle. To determine whether ATP may contribute to the vasodilatory response to exercise in the forearm, we measured arterialised and venous plasma ATP concentration and venous oxygen content in 10 healthy young males at rest, and at 30 and 180 seconds during dynamic handgrip exercise at 45% of maximum voluntary contraction (MVC). Results: Venous plasma ATP concentration was elevated above rest after 30 seconds of exercise (P < 0.05), and remained at this higher level 180 seconds into exercise (P < 0.05 versus rest). The increase in ATP was mirrored by a decrease in venous oxygen content. While there was no significant relationship between ATP concentration and venous oxygen content at 30 seconds of exercise, they were moderately and inversely correlated at 180 seconds of exercise (r = -0.651, P = 0.021). Arterial ATP concentration remained unchanged throughout exercise, resulting in an increase in the venous-arterial ATP difference. Conclusions: Collectively these results indicate that ATP in the plasma originated from the muscle microcirculation, and are consistent with the notion that deoxygenation of the blood perfusing the muscle acts as a stimulus for ATP release. That ATP concentration was elevated just 30 seconds after the onset of exercise also suggests that ATP may be a contributing factor to the blood flow response in the transition from rest to steady state exercise.
Resumo:
As most of people know that all of mass media are state-owned in China, television stations are not exceptional to belong to the enormous state-owned system. But to date, with the economic reform in the broadcasting system and China entering into WTO, the television industry has increased greatly and the television market has matured with more and more competition. The players in China’s television industry have changed from the monologue of TV stations to multi roles of TV stations, production companies and overseas television companies, although TV stations are still the majority of China’s TV market. Especially, private television production companies are becoming more and more active in this market. In this paper, I will describe the development process and challenges of this group in China and ask whether the emergence of this group means for the whole China’s TV industry?
Resumo:
As most people know, all mass media, including television stations, are state-owned in China. However, with the economic reform in the broadcasting system and China entering the World Trade Organization (WTO), the television industry has expanded greatly and the television market has evolved, with an ensuing growth of competition. The players in China’s television industry have changed from a monologue of TV stations to stations that hold multiple roles and a growth of production companies and overseas television companies although the TV stations still dominate China’s television market. Private television production companies are, however, becoming increasingly active in this market.
Resumo:
Typical high strength steels (HSS) have exceptional high strengths with improved weldability making the material attractive in modern steel constructions. However, due to lack of understanding, most of the current steel design standards are limited to conventional low strength steels (LSS, i.e. fy ≤ 450 MPa). This paper presents the details of full-scale experimental tests on short beams fabricated from BISPLATE80 HSS materials (nominal fy = 690 MPa). The various slenderness ratios of the plate elements in the test specimens were chosen in the range near the current yield limit (AS4100-1998, etc.). The experimental studies presented in this paper have produced a better understanding of the structural behaviour of HSS members subjected to local instabilities. Comparisons have also presented in the paper regarding to the design predictions from the current steel standards (AS4100-1998). This study has enabled to provide a series of proposals for proper assessment of plate slenderness limits for structural members made of representative HSS materials. This research work also enables the inclusion of further versions in the steel design specifications for typical HSS materials to be used in buildings and bridges. This paper also presents a distribution model of residual stresses in the longitudinal direction for typical HSS I-sections.