963 resultados para Hairy roots
Resumo:
In this paper we assume inflation rates in European Union countries may in fact be fractionally integrated. Given this assumption, we obtain estimations of the order of integration by means a method based on wavelets coefficients. Finally, results obtained allow reject the unit root hypothesis on inflation rates. It means that a random shock on the rate of inflation in these countries has transitory effects that gradually diminish with the passage of time, that this, said shock hasn¿t a permanent effect on future values of inflation rates
Resumo:
Empirical studies have shown little evidence to support the presence of all unit roots present in the $^{\Delta_4}$ filter in quarterly seasonal time series. This paper analyses the performance of the Hylleberg, Engle, Granger and Yoo (1990) (HEGY) procedure when the roots under the null are not all present. We exploit the Vector of Quarters representation and cointegration relationship between the quarters when factors $(1-L),(1+L),\bigg(1+L^2\bigg),\bigg(1-L^2\bigg) y \bigg(1+L+L^2+L^3\bigg)$ are a source of nonstationarity in a process in order to obtain the distribution of tests of the HEGY procedure when the underlying processes have a root at the zero, Nyquist frequency, two complex conjugates of frequency $^{\pi/2}$ and two combinations of the previous cases. We show both theoretically and through a Monte-Carlo analysis that the t-ratios $^{t_{{\hat\pi}_1}}$ and $^{t_{{\hat\pi}_2}}$ and the F-type tests used in the HEGY procedure have the same distribution as under the null of a seasonal random walk when the root(s) is/are present, although this is not the case for the t-ratio tests associated with unit roots at frequency $^{\pi/2}$.
Resumo:
Empirical studies have shown little evidence to support the presence of all unit roots present in the $^{\Delta_4}$ filter in quarterly seasonal time series. This paper analyses the performance of the Hylleberg, Engle, Granger and Yoo (1990) (HEGY) procedure when the roots under the null are not all present. We exploit the Vector of Quarters representation and cointegration relationship between the quarters when factors $(1-L),(1+L),\bigg(1+L^2\bigg),\bigg(1-L^2\bigg) y \bigg(1+L+L^2+L^3\bigg)$ are a source of nonstationarity in a process in order to obtain the distribution of tests of the HEGY procedure when the underlying processes have a root at the zero, Nyquist frequency, two complex conjugates of frequency $^{\pi/2}$ and two combinations of the previous cases. We show both theoretically and through a Monte-Carlo analysis that the t-ratios $^{t_{{\hat\pi}_1}}$ and $^{t_{{\hat\pi}_2}}$ and the F-type tests used in the HEGY procedure have the same distribution as under the null of a seasonal random walk when the root(s) is/are present, although this is not the case for the t-ratio tests associated with unit roots at frequency $^{\pi/2}$.
Resumo:
In this paper we assume inflation rates in European Union countries may in fact be fractionally integrated. Given this assumption, we obtain estimations of the order of integration by means a method based on wavelets coefficients. Finally, results obtained allow reject the unit root hypothesis on inflation rates. It means that a random shock on the rate of inflation in these countries has transitory effects that gradually diminish with the passage of time, that this, said shock hasn¿t a permanent effect on future values of inflation rates
Resumo:
The genetic diversity of ten Bradyrhizobium strains was evaluated for tolerance to high temperatures, to different salinity levels and for the efficiency of symbiosis with cowpea plants (Vigna unguiculata (L.) Walp.). Eight of these strains were isolated from nodules that appeared on cowpea after inoculation with suspensions of soil sampled from around the root system of Sesbania virgata (wand riverhemp) in ecosystems of South Minas Gerais. The other two strains used in our analyses as references, were from the Amazon and are currently recommended as cowpea inoculants. Genetic diversity was analyzed by amplifying repetitive DNA elements with the BOX primer, revealing high genetic diversity with each strain presenting a unique band profile. Leonard jar assays showed that the strains UFLA 03-30 and UFLA 03-38 had the highest N2-fixing potentials in symbiosis with cowpea. These strains had more shoot and nodule dry matter, more shoot N accumulation, and a higher relative efficiency than the strains recommended as inoculants. All strains grew in media of pH levels ranging from 4.0 to 9.0. The strains with the highest N2-fixing efficiencies in symbiosis with cowpea were also tolerant to the greatest number of antibiotics. However, these strains also had the lowest tolerance to high salt concentrations. All strains, with the exceptions of UFLA 03-84 and UFLA 03-37, tolerated temperatures of up to 40 ºC. The genetic and phenotypic characteristics of the eight strains isolated from soils of the same region were highly variable, as well as their symbiotic efficiencies, despite their common origin. This variability highlights the importance of including these tests in the selection of cowpea inoculant strains.
Resumo:
This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: 1) quantification of biological nitrogen fixation (BNF) in hairy vetch; 2) estimation of the N release rate from hairy vetch residues on the soil surface; 3) quantification of 15N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two-year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrófico arênico (Brazilian Soil Classification), at a mean annual temperature of 18 ºC and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha-1 N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha-1 of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch 15N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha-1, without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha-1, confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage.
Resumo:
Information on the effects of released wild-type or genetically engineered bacteria on resident bacterial communities is important to assess the potential risks associated with the introduction of these organisms into agroecosystems. The rifampicin-resistant biocontrol strain Pseudomonas fluorescens CHA0-Rif and its derivative CHA0-Rif/pME3424, which has improved biocontrol activity and enhanced production of the antibiotics 2,4-diacetylphloroglucinol (Phl) and pyoluteorin (Plt), were introduced into soil microcosms and the culturable bacterial community developing on cucumber roots was investigated 10 and 52 days later. The introduction of either of the two strains led to a transiently enhanced metabolic activity of the bacterial community on glucose dimers and polymers as measured with BIOLOG GN plates, but natural succession between the two sampling dates changed the metabolic activity of the bacterial community more than did the inoculants. The introduced strains did not significantly affect the abundance of dominant genotypic groups of culturable bacteria discriminated by restriction analysis of amplified 16S rDNA of 2500 individual isolates. About 30-50% of the resident bacteria were very sensitive to Phl and Plt, but neither the wild-type nor CHA0-Rif/pME3424 changed the proportion of sensitive and resistant bacteria in situ. In microcosms with a synthetic bacterial community, both biocontrol strains reduced the population of a strain of Pseudomonas but did not affect the abundance of four other bacterial strains including two highly antibiotic-sensitive isolates. We conclude that detectable perturbations in the metabolic activity of the resident bacterial community caused by the biocontrol strain CHA0-Rif are (i) transient, (ii) similar for the genetically improved derivative CHA0-Rif/pME3424 and (iii) less pronounced than changes in the community structure during plant growth.
Resumo:
Establishment of the water layer in an irrigated rice crop leads to consumption of free oxygen in the soil which enters in a chemical reduction process mediated by anaerobic microorganisms, changing the crop environment. To maintain optimal growth in an environment without O2, rice plants develop pore spaces (aerenchyma) that allow O2 transport from air to the roots. Carrying capacity is determined by the rice genome and it may vary among cultivars. Plants that have higher capacity for formation of aerenchyma should theoretically carry more O2 to the roots. However, part of the O2 that reaches the roots is lost due to permeability of the roots and the O2 gradient created between the soil and roots. The O2 that is lost to the outside medium can react with chemically reduced elements present in the soil; one of them is iron, which reacts with oxygen and forms an iron plaque on the outer root surface. Therefore, evaluation of the iron plaque and of the formation of pore spaces on the root can serve as a parameter to differentiate rice cultivars in regard to the volume of O2 transported via aerenchyma. An experiment was thus carried out in a greenhouse with the aim of comparing aerenchyma and iron plaque formation in 13 rice cultivars grown in flooded soils to their formation under growing conditions similar to a normal field, without free oxygen. The results indicated significant differences in the volume of pore spaces in the roots among cultivars and along the root segment in each cultivar, indicating that under flooded conditions the genetic potential of the plant is crucial in induction of cell death and formation of aerenchyma in response to lack of O2. In addition, the amount of Fe accumulated on the root surface was different among genotypes and along the roots. Thus, we concluded that the rice genotypes exhibit different responses for aerenchyma formation, oxygen release by the roots and iron plaque formation, and that there is a direct relationship between porosity and the amount of iron oxidized on the root surface.
Resumo:
A significant quantity of nutrients in vineyards may return to the soil each year through decomposition of residues from cover plants. This study aimed to evaluate biomass decomposition and nutrient release from residues of black oats and hairy vetch deposited in the vines rows, with and without plastic shelter, and in the between-row areas throughout the vegetative and productive cycle of the plants. The study was conducted in a commercial vineyard in Bento Gonçalves, RS, Brazil, from October 2008 to February 2009. Black oat (Avena strigosa) and hairy vetch (Vicia villosa) residues were collected, subjected to chemical (C, N, P, K, Ca, and Mg) and biochemical (cellulose - Cel, hemicellulose - Hem, and lignin - Lig content) analyses, and placed in litter bags, which were deposited in vines rows without plastic shelter (VPRWS), in vines rows with plastic shelter (VPRS), and in the between-row areas (BR). We collected the residues at 0, 33, 58, 76, and 110 days after deposition of the litter bags, prepared the material, and subjected it to analysis of total N, P, K, Ca, and Mg content. The VPRS contained the largest quantities and percentages of dry matter and residual nutrients (except for Ca) in black oat residues from October to February, which coincides with the period from flowering up to grape harvest. This practice led to greater protection of the soil surface, avoiding surface runoff of the solution derived from between the rows, but it retarded nutrient cycling. The rate of biomass decomposition and nutrient release from hairy vetch residues from October to February was not affected by the position of deposition of the residues in the vineyard, which may especially be attributed to the lower values of the C/N and Lig/N ratios. Regardless of the type of residue, black oat or hairy vetch, the greatest decomposition and nutrient release mainly occurred up to 33 days after deposition of the residues on the soil surface, which coincided with the flowering of the grapevines, which is one of the phenological stages of greatest demand for nutrients.
Resumo:
Using rice (Oryza sativa) as a model crop species, we performed an in-depth temporal transcriptome analysis, covering the early and late stages of Pi deprivation as well as Pi recovery in roots and shoots, using next-generation sequencing. Analyses of 126 paired-end RNA sequencing libraries, spanning nine time points, provided a comprehensive overview of the dynamic responses of rice to Pi stress. Differentially expressed genes were grouped into eight sets based on their responses to Pi starvation and recovery, enabling the complex signaling pathways involved in Pi homeostasis to be untangled. A reference annotation-based transcript assembly was also generated, identifying 438 unannotated loci that were differentially expressed under Pi starvation. Several genes also showed induction of unannotated splice isoforms under Pi starvation. Among these, PHOSPHATE2 (PHO2), a key regulator of Pi homeostasis, displayed a Pi starvation-induced isoform, which was associated with increased translation activity. In addition, microRNA (miRNA) expression profiles after long-term Pi starvation in roots and shoots were assessed, identifying 20 miRNA families that were not previously associated with Pi starvation, such as miR6250. In this article, we present a comprehensive spatio-temporal transcriptome analysis of plant responses to Pi stress, revealing a large number of potential key regulators of Pi homeostasis in plants.
Resumo:
Scopolamine is an alkaloid widely used in medicine for its anticholinergic activity. The aim of this review is to show that metabolic engineering techniques constitute a suitable tool to improve the production of tropane alkaloids, focusing in particular on scopolamine. We present an overview of results obtained by various research groups, including our own, who have studied the overexpression of genes involved in the biosynthesis of scopolamine in different plant species that produce tropane alkaloids. Experiments carried out to improve production in hairy root cultures will also be described, as well as those attempting to biotransform hyoscyamine into scopolamine in roots and transgenic tobacco cells.
Resumo:
In this study we tested whether communities of arbuscular mycorrhizal fungi (AMF) colonizing the roots of maize (Zea mays L.) were affected by soil tillage practices (plowing, chiseling, and no-till) in a long-term field experiment carried out in Tanikon (Switzerland). AMF were identified in the roots using specific polymerase chain reaction (PCR) markers that had been developed for the AMF previously isolated from the soils of the studied site. A nested PCR procedure with primers of increased specificity (eukaryotic, then, fungal, then AMF species or. species-grouop specific) was used. Sequencing of amplified DNA confirmed that the DNA obtained from the maize roots was of AMF origin. Presence of particular AMF species or species-group was scored as a presence of a DNA product after PCR with specific primers. We also used single-strand conformation polymorphism analysis (SSCP), of amplified DNA samples to-check if the amplification of the DNA from maize roots matched the expected profile for a particular AMF isolate with a given specific primer pair. Presence of the genus Scutellospora, in maize roots was strongly reduced in plowed and chiseled soils. Fungi from the suborder Glomineae were more prevalent colonizers of maize roots growing in plowed soils, but were also present in the roots from other tillage treatments. These changes in community of AMF colonizing maize roots might be due to (1), the differences in tolerance to the tillage-induced disruption of the hyphae among the different AMF species, (2) changes in nutrient content of the soil, (3) changes in microbial activity, or (4) changes in weed populations in response to soil tillage. This is the first report on community composition of AMF in the roots of a field-grown crop plant (maize) as affected by soil tillage.