997 resultados para Hair Cells, Auditory, Outer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian inner ear has very limited ability to regenerate lost sensory hair cells. This deficiency becomes apparent when hair cell loss leads to hearing loss as a result of either ototoxic insult or the aging process. Coincidently, with this inability to regenerate lost hair cells, the adult cochlea does not appear to harbor cells with a proliferative capacity that could serve as progenitor cells for lost cells. In contrast, adult mammalian vestibular sensory epithelia display a limited ability for hair cell regeneration, and sphere-forming cells with stem cell features can be isolated from the adult murine vestibular system. The neonatal inner ear, however, does harbor sphere-forming stem cells residing in cochlear and vestibular tissues. Here, we provide protocols to isolate sphere-forming stem cells from neonatal vestibular and cochlear sensory epithelia as well as from the spiral ganglion. We further describe procedures for sphere propagation, cell differentiation, and characterization of inner ear cell types derived from spheres. Sphere-forming stem cells from the mouse inner ear are an important tool for the development of cellular replacement strategies of damaged inner ears and are a bona fide progenitor cell source for transplantation studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquatic toxicology is facing the challenge to assess the impact of complex mixtures of compounds on diverse biological endpoints. So far, ecotoxicology focuses mainly on apical endpoints such as growth, lethality and reproduction, but does not consider sublethal toxic effects that may indirectly cause ecological effects. One such sublethal effect is toxicant-induced impairment of neurosensory functions which will affect important behavioural traits of exposed organisms. Here, we critically review the mechanosensory lateral line (LL) system of zebrafish as a model to screen for chemical effects on neurosensory function of fish in particular and vertebrates in general. The LL system consists of so-called neuromasts, composed of centrally located sensory hair cells, and surrounding supporting cells. The function of neuromasts is the detection of water movements that is essential for the fish's ability to detect prey, to escape predator, to socially interact or to show rheotactic behaviour. Recent advances in the study of these organs provided researchers with a broad area of molecular tools for easy and rapid detection of neuromasts dysfunction and/or disturbed development. Further, genes involved in neuromasts differentiation have been identified using auditory/mechanosensory mutants and morphants. A number of environmental toxicants including metals and pharmaceuticals have been shown to affect neuromasts development and/or function. The use of the LL organ for toxicological studies offers the advantage to integrate the available profound knowledge on developmental biology of the neuromasts with the study of chemical toxicity. This combination may provide a powerful tool in environmental risk assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. APPROACH We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. MAIN RESULTS Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. SIGNIFICANCE This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and thereby contribute to the development of fully implantable devices with better auditory resolution in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cochlear implants are neuroprostheses that are inserted into the inner ear to directly electrically stimulate the auditory nerve, thus replacing lost cochlear receptors, the hair cells. The reduction of the gap between electrodes and nerve cells will contribute to technological solutions simultaneously increasing the frequency resolution, the sound quality and the amplification of the signal. Recent findings indicate that neurotrophins (NTs) such as brain derived neurotrophic factor (BDNF) stimulate the neurite outgrowth of auditory nerve cells by activating Trk receptors on the cellular surface (1–3). Furthermore, small-size TrkB receptor agonists such as di-hydroxyflavone (DHF) are now available, which activate the TrkB receptor with similar efficiency as BDNF, but are much more stable (4). Experimentally, such molecules are currently used to attract nerve cells towards, for example, the electrodes of cochlear implants. This paper analyses the scenarios of low dose aspects of controlled release of small-size Trk receptor agonists from the coated CI electrode array into the inner ear. The control must first ensure a sufficient dose for the onset of neurite growth. Secondly, a gradient in concentration needs to be maintained to allow directive growth of neurites through the perilymph-filled gap towards the electrodes of the implant. We used fluorescein as a test molecule for its molecular size similarity to DHF and investigated two different transport mechanisms of drug dispensing, which both have the potential to fulfil controlled low-throughput drug-deliverable requirements. The first is based on the release of aqueous fluorescein into water through well-defined 60-μm size holes arrays in a membrane by pure osmosis. The release was both simulated using the software COMSOL and observed experimentally. In the second approach, solid fluorescein crystals were encapsulated in a thin layer of parylene (PPX), hence creating random nanometer-sized pinholes. In this approach, the release occurred due to subsequent water diffusion through the pinholes, dissolution of the fluorescein and then release by out-diffusion. Surprisingly, the release rate of solid fluorescein through the nanoscopic scale holes was found to be in the same order of magnitude as for liquid fluorescein release through microscopic holes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normal mammalian hearing is refined by amplification of the motion of the cochlear partition. This partition, comprising the organ of Corti sandwiched between the basilar and tectorial membranes, contains the outer hair cells that are thought to drive this amplification process. Force generation by outer hair cells has been studied extensively in vitro and in situ, but, to understand cochlear amplification fully, it is necessary to characterize the role played by each of the components of the cochlear partition in vivo. Observations of cochlear partition motion in vivo are severely restricted by its inaccessibility and sensitivity to surgical trauma, so, for the present study, a computer model has been used to simulate the operation of the cochlea under different experimental conditions. In this model, which uniquely retains much of the three-dimensional complexity of the real cochlea, the motions of the basilar and tectorial membranes are fundamentally different during in situ- and in vivo-like conditions. Furthermore, enhanced outer hair cell force generation in vitro leads paradoxically to a decrease in the gain of the cochlear amplifier during sound stimulation to the model in vivo. These results suggest that it is not possible to extrapolate directly from experimental observations made in vitro and in situ to the normal operation of the intact organ in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hearing loss is most often the result of hair-cell degeneration due to genetic abnormalities or ototoxic and traumatic insults. In the postembryonic and adult mammalian auditory sensory epithelium, the organ of Corti, no hair-cell regeneration has ever been observed. However, nonmammalian hair-cell epithelia are capable of regenerating sensory hair cells as a consequence of nonsensory supporting-cell proliferation. The supporting cells of the organ of Corti are highly specialized, terminally differentiated cell types that apparently are incapable of proliferation. At the molecular level terminally differentiated cells have been shown to express high levels of cell-cycle inhibitors, in particular, cyclin-dependent kinase inhibitors [Parker, S. B., et al. (1995) Science 267, 1024–1027], which are thought to be responsible for preventing these cells from reentering the cell cycle. Here we report that the cyclin-dependent kinase inhibitor p27Kip1 is selectively expressed in the supporting-cell population of the organ of Corti. Effects of p27Kip1-gene disruption include ongoing cell proliferation in postnatal and adult mouse organ of Corti at time points well after mitosis normally has ceased during embryonic development. This suggests that release from p27Kip1-induced cell-cycle arrest is sufficient to allow supporting-cell proliferation to occur. This finding may provide an important pathway for inducing hair-cell regeneration in the mammalian hearing organ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The L-type voltage-gated Ca2+ channels that control tonic release of neurotransmitter from hair cells exhibit unusual electrophysiological properties: a low activation threshold, rapid activation and deactivation, and a lack of Ca2+-dependent inactivation. We have inquired whether these characteristics result from cell-specific splicing of the mRNA for the L-type α1D subunit that predominates in hair cells of the chicken’s cochlea. The α1D subunit in hair cells contains three uncommon exons: one encoding a 26-aa insert in the cytoplasmic loop between repeats I and II, an alternative exon for transmembrane segment IIIS2, and a heretofore undescribed exon specifying a 10-aa insert in the cytoplasmic loop between segments IVS2 and IVS3. We propose that the alternative splicing of the α1D mRNA contributes to the unusual behavior of the hair cell’s voltage-gated Ca2+ channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transduction-channel gating by hair cells apparently requires a gating spring, an elastic element that transmits force to the channels. To determine whether the gating spring is the tip link, a filament interconnecting two stereocilia along the axis of mechanical sensitivity, we examined the tip link's structure at high resolution by using rapid-freeze, deep-etch electron microscopy. We found that the tip link is a right-handed, coiled double filament that usually forks into two branches before contacting a taller stereocilium; at the other end, several short filaments extend to the tip link from the shorter stereocilium. The structure of the tip link suggests that it is either a helical polymer or a braided pair of filamentous macromolecules and is thus likely to be relatively stiff and inextensible. Such behavior is incompatible with the measured elasticity of the gating spring, suggesting that the gating spring instead lies in series with the helical segment of the tip link.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertebrate sensory hair cells achieve high sensitivity and frequency selectivity by adding self-generated mechanical energy to low-level signals. This allows them to detect signals that are smaller than thermal molecular motion and to achieve significant resonance amplitudes and frequency selectivity despite the viscosity of the surrounding fluid. In nonmammals, a great deal of in vitro evidence indicates that the active process responsible for this amplification is intimately associated with the hair cells' transduction channels in the stereovillar bundle. Here, we provide in vivo evidence of hair-cell bundle involvement in active processes. Electrical stimulation of the inner ear of a lizard at frequencies typical for this hearing organ induced low-level otoacoustic emissions that could be modulated by low-frequency sound. The unique modulation pattern permitted the tracing of the active process involved to the stereovillar bundles of the sensory hair cells. This supports the notion that, in nonmammals, the cochlear amplifier in the hair cells is driven by a bundle motor system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the mammalian inner ear there are six separate sensory regions that subserve the functions of hearing and balance, although how these sensory regions become specified remains unknown. Each sensory region is populated by two cell types, the mechanosensory hair cell and the supporting cell, which are arranged in a mosaic in which each hair cell is surrounded by supporting cells. The proposed mechanism for creating the sensory mosaic is lateral inhibition mediated by the Notch signaling pathway. However, one of the Notch ligands, Jagged1 (Jag1), does not show an expression pattern wholly consistent with a role in lateral inhibition, as it marks the sensory patches from very early in their development—presumably long before cells make their final fate decisions. It has been proposed that Jag1 has a role in specifying sensory versus nonsensory epithelium within the ear [Adam, J., Myat, A., Roux, I. L., Eddison, M., Henrique, D., Ish-Horowicz, D. & Lewis, J. (1998) Development (Cambridge, U.K.) 125, 4645–4654]. Here we provide experimental evidence that Notch signaling may be involved in specifying sensory regions by showing that a dominant mouse mutant headturner (Htu) contains a missense mutation in the Jag1 gene and displays missing posterior and sometimes anterior ampullae, structures that house the sensory cristae. Htu/+ mutants also demonstrate a significant reduction in the numbers of outer hair cells in the organ of Corti. Because lateral inhibition mediated by Notch predicts that disruptions in this pathway would lead to an increase in hair cells, we believe these data indicate an earlier role for Notch within the inner ear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vestibules of adult guinea pigs were lesioned with gentamicin and then treated with perilymphatic infusion of either of two growth factor mixtures (i.e., GF I or GF II). GF I contained transforming growth factor α (TGFα), insulin-like growth factor type one (IGF-1), and retinoic acid (RA), whereas GF II contained those three factors and brain-derived neurotrophic factor. Treatment with GF I significantly enhanced vestibular hair cell renewal in ototoxin-damaged utricles and the maturation of stereociliary bundle morphology. The addition of brain-derived neurotrophic factor to the GF II infusion mixture resulted in the return of type 1 vestibular hair cells in ototoxin-damaged cristae, and improved vestibular function. These results suggest that growth factor therapy may be an effective treatment for balance disorders that are the result of hair cell dysfunction and/or loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the mammalian cochlea, the basilar membrane's (BM) mechanical responses are amplified, and frequency tuning is sharpened through active feedback from the electromotile outer hair cells (OHCs). To be effective, OHC feedback must be delivered to the correct region of the BM and introduced at the appropriate time in each cycle of BM displacement. To investigate when OHCs contribute to cochlear amplification, a laser-diode interferometer was used to measure tone-evoked BM displacements in the basal turn of the guinea pig cochlea. Measurements were made at multiple sites across the width of the BM, which are tuned to the same characteristic frequency (CF). In response to CF tones, the largest displacements occur in the OHC region and phase lead those measured beneath the outer pillar cells and adjacent to the spiral ligament by about 90°. Postmortem, responses beneath the OHCs are reduced by up to 65 dB, and all regions across the width of the BM move in unison. We suggest that OHCs amplify BM responses to CF tones when the BM is moving at maximum velocity. In regions of the BM where OHCs contribute to its motion, the responses are compressive and nonlinear. We measured the distribution of nonlinear compressive vibrations along the length of the BM in response to a single frequency tone and estimated that OHC amplification is restricted to a 1.25- to 1.40-mm length of BM centered on the CF place.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian hearing depends on the enhanced mechanical properties of the basilar membrane within the cochlear duct. The enhancement arises through the action of outer hair cells that act like force generators within the organ of Corti. Simple considerations show that underlying mechanism of somatic motility depends on local area changes within the lateral membrane of the cell. The molecular basis for this phenomenon is a dense array of particles that are inserted into the basolateral membrane and that are capable of sensing membrane potential field. We show here that outer hair cells selectively take up fructose, at rates high enough to suggest that a sugar transporter may be part of the motor complex. The relation of these findings to a recent candidate for the molecular motor is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tectorial membrane has long been postulated as playing a role in the exquisite sensitivity of the cochlea. In particular, it has been proposed that the tectorial membrane provides a second resonant system, in addition to that of the basilar membrane, which contributes to the amplification of the motion of the cochlear partition. Until now, technical difficulties had prevented vibration measurements of the tectorial membrane and, therefore, precluded direct evidence of a mechanical resonance. In the study reported here, the vibration of the tectorial membrane was measured in two orthogonal directions by using a novel method of combining laser interferometry with a photodiode technique. It is shown experimentally that the motion of the tectorial membrane is resonant at a frequency of 0.5 octave (oct) below the resonant frequency of the basilar membrane and polarized parallel to the reticular lamina. It is concluded that the resonant motion of the tectorial membrane is due to a parallel resonance between the mass of the tectorial membrane and the compliance of the stereocilia of the outer hair cells. Moreover, in combination with the contractile force of outer hair cells, it is proposed that inertial motion of the tectorial membrane provides the necessary conditions to allow positive feedback of mechanical energy into the cochlear partition, thereby amplifying and tuning the cochlear response.