983 resultados para Habitat Type


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The urban landscape encompasses a broad spectrum of variable environments ranging from remnant patches to highly modified streetscapes. Despite the expansion of urban environments, few studies have examined the influence of urbanization on faunal diversity, particularly in the Southern Hemisphere. In this study, four broad habitat types were recognized in the urban environment, representing a continuum of modification ranging from parks with remnant vegetation to streetscapes dominated by native vegetation and those dominated by exotic vegetation to recently developed streetscapes. Bird censuses were conducted at 36 sites throughout urban Melbourne, with nine sites surveyed in each habitat type. The four habitat types supported significantly different bird communities based on species richness, abundance and composition suggesting that bird assemblages of urban environments are non-uniform. Parks and native streetscapes generally supported fewer introduced species than exotic and recently developed streetscapes. Overall abundance and richness of species were lower in the exotic and recently developed streetscapes than in parks and native streetscapes. Significant differences were also observed in foraging guilds within the four habitat types, with parks having the most foraging guilds and recently developed streetscapes having the fewest. The transition from native to exotic streetscapes saw the progressive loss of insectivorous and nectarivorous species reflecting a reliance by these species on structurally diverse and/or native vegetation for both shelter and food resources. The implementation of effective strategies and incentives which encourage the planting of structurally diverse native vegetation in streetscapes and gardens should be paramount if avian biodiversity is to be retained and enhanced in urban environments. It is also critical to encourage the maintenance of the existing remnant vegetation in the urban environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inland fisheries contribute only about ten percent to global fish production. Asia is the leading producer of inland fish, accounting for over 80 percent of the total production. Until recently, the inland fisheries sector had taken back stage in fisheries development plans, particularly so, given the emphasis being placed on aquaculture development throughout the world, including Asia. This report evaluates the inland fishery practices in a number of Asian countries according to habitat type, role in overall foodfish supplies and development trends. Special emphasis is laid on stock enhancement in inland fisheries in Asia, and only those fisheries in which some form of stock enhancement is practised are considered in this report.

In Asia, inland fisheries are mostly rural, artisanal activities catering to rural populations and providing an affordable source of animal protein, employment and household income. Stock enhancement is an integral component of many inland fisheries. With recent developments in
artificial propagation techniques for fast-growing and desirable fish species and the consequent increased availability of seed stock, such activities are beginning to affect inland fishery production in most Asian countries. Indeed, new avenues of production such as culture-based fisheries are increasingly adopted and seen as a way forward in most countries. Inland fishery activities also have a distinct advantage in that their development is usually less resource intensive than is aquaculture.

The economic viability of stock enhancement of large lacustrine waterbodies and rivers has not been demonstrated in any of the Asian countries, the fisheries of such waterbodies being dependent on naturally recruited stocks. The most successful stock enhancements in Asia are in floodplain beels and oxbow lakes in Bangladesh where the use of small waterbodies that are not capable of supporting natural fisheries has led to culture-based fisheries having stock and recapture rates that are very high. Culture-based fisheries are not resource intensive and are community-based activities. However, their success requires major institutional changes, and these are affected by national and local governments. In general, they can be considered to have the greatest potential for further development.

A major concern related to stock enhancements in inland waters is their possible effects on biodiversity. This is for two reasons: firstly, most countries depend wholly or partially on exotic species for stock enhancement and secondly, freshwater fishes are known to be among the most threatened of vertebrates. Major studies should be undertaken to evaluate the current situation so that remedial steps can be taken, if needed, without causing serious harm to some of the stock enhancement practices that are gaining momentum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated community-based monitoring in Victoria’s Marine National Parks (MNPs) and Sanctuaries (MSs) from January to May 2004. The primary aim of this study was to evaluate the potential for community-based monitoring projects to assist in the collection of data for the management of Victoria’s MNPs and MSs. The pilot habitats that were assessed included subtidal reefs at the Merri MS, intertidal reefs at Ricketts Point MS and seagrass beds at Corner Inlet MNP. The three main objectives for this study were to:
 - Develop a template for the monitoring of marine habitats by community groups.
 - Assess the quality and integrity of data collected by community volunteers.
 - Determine a sustainable model for community monitoring of marine habitats.
Three standard operating procedures (SOPs) in the form of a “how to” manual, were developed for each habitat type. The SOPs were adapted from scientifically robust studies and developed in consultation with community volunteer groups by means of field trials. Volunteer feedback assisted in the final SOP design. The SOP will allow Parks Victoria Rangers to develop community-based programs within the parks. The SOPs are accessible as Parks Victoria Technical Series Numbers 16, 17 and 18. Data collected by volunteers across the three habitat sites were assessed and compared to that collected by scientists. It was found that data quality collected by volunteers was dependent on habitat type and the type of measurement the volunteer was required to assess. Volunteer estimation measurements were highly variable across all three habitat sites, compared to quantitative data collection. Subtidal monitoring had the greatest potential for inconsistency in data collection. Intertidal monitoring is the most sustainable of the three habitat monitoring procedures. Sustainability of community-based monitoring programs is dependent on continued support and training by the management authority of Victoria’s MNPs and MSs. For the expansion of the monitoring programs to other MNPs and MSs, the management authority could expand strong relationships with the community volunteer groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is an increasing realisation of the importance of community or volunteer collected data for management programs that are otherwise limited by the availability of funds or resources. However, there are concerns regarding the reliability of scientific data collected by inexperienced people. We investigated the potential for community-based monitoring in Victoria’s newly established system of Marine Protected Areas. The main objectives for the study were to 1) develop a template for the scientific monitoring of marine habitats suitable for community groups, 2) assess data quality and data integrity collected by community volunteers and 3) determine a sustainable model for ongoing community participation in monitoring marine habitats. Three different habitats (subtidal, intertidal, and seagrass) were investigated and data collected by volunteers across these habitats was compared to that collected by scientists. Reliability of data collected by volunteers was dependent on habitat type and the type of measurement the volunteers were required to make. Qualitative estimates made by volunteers were highly variable across all three habitat sites, compared to quantitative data collection. Subtidal monitoring had the greatest inaccuracy for data collection, whereas intertidal reef monitoring was most reliable. Sustainability of community-based monitoring programs is dependent on adequate training for volunteers and the development of partnerships to foster greater community engagement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Riparian zones are a characteristic component of many landscapes throughout the world and increasingly are valued as key areas for biodiversity conservation. Their importance for bird communities has been well recognised in semi-arid environments and in modified landscapes where there is a marked contrast between riparian and adjacent non-riparian vegetation. The value of riparian zones in largely intact landscapes with continuous vegetation cover is less well understood. This research examined the importance of riparian habitats for avifauna conservation by investigating the ecological interactions contributing to the pattern of bird assemblages in riparian and adjacent non-riparian habitats. Specifically, the focus is on the bird assemblages of riparian zones and those of adjacent non-riparian vegetation types and the influence that associated differences in resource availabilities, habitat structure and conditions have on observed patterns. This study was conducted in the foothill forests of the Victorian Highlands, south-east Australia. Mixed-species eucalypt (genus Eucalyptus) forests dominate the vegetation of this region. Site selection was based on the occurrence of suitable riparian habitat interspersed within extensive, relatively undisturbed (i.e. no recent timber harvesting or fire events) forest mosaics. A series of 30 paired riparian and non-riparian sites were established among six stream systems in three forest areas (Bunyip State Park, Kinglake National Park and Marysville State Forest). Riparian sites were positioned alongside the stream and the non-riparian partner site was positioned on a facing slope at a distance of approximately 750 m. Bird surveys were carried out during 29 visits to each site between July 2001 and December 2002. Riparian sites were floristically distinct from non-riparian sites and had a more complex vegetation structure, including a mid-storey tree layer mostly absent from non-riparian sites, extensive fine litter and coarse woody debris, and dense ground-layer vegetation (e.g. sedges and ground ferns). The characteristic features of non-riparian habitats included a relatively dense canopy cover, a ground layer dominated by grasses and fine litter, and a high density of canopy-forming trees in the smaller size-classes. Riparian zones supported a significantly greater species richness, abundance and diversity of birds when compared to non-riparian habitats. The composition of bird assemblages differed significantly between riparian and non-riparian habitats, with riparian assemblages displaying a higher level of similarity among sites. The strongest contributors to observed dissimilarities between habitat types included species that occurred exclusively in either habitat type or species with large contrasts in abundance between habitat types. Much of the avifauna (36%) of the study area is composed of species that are common and widespread in south-east Australia (i.e. forest generalists). Riparian habitats were characterised by a suite of species more typical of wetter forest types in south-east Australia and many of these species had a restricted distribution in the forest mosaic. Some species (7%) occurred exclusively in riparian habitats (i.e. riparian selective species) while others (43%) were strongly linked to these habitats (i.e. riparian associated species). A smaller proportion of species occurred exclusively (2%) in non-riparian habitats (i.e. non-riparian selective species) or were strongly linked to these habitats (10%; i.e. non-riparian associated species). To examine the seasonal dynamics of assemblages, the variation through time in species richness, abundance and composition was compared between riparian and non-riparian sites. Riparian assemblages supported greater richness and abundance, and displayed less variation in these parameters, than non-riparian assemblages at all times. The species composition of riparian assemblages was distinct from non-riparian assemblages throughout the annual cycle. An influx of seasonal migrants elevated species richness and abundance in the forest landscape during spring and summer. The large-scale movement pattern (e.g. coastal migrant, inland migrant) adopted by migrating species was associated with their preference for riparian or non-riparian habitats in the landscape. Species which migrate north-south along the east coast of mainland Australia (i.e. coastal migrants) used riparian zones disproportionately; eight of eleven species were riparian associated species. Species which migrate north-south through inland Australia (i.e. inland migrants) were mostly associated with non-riparian habitats. The significant differences in the dynamics of community structure between riparian and non-riparian assemblages shows that there is a disproportionate use of riparian zones across the landscape and that they provide higher quality habitat for birds throughout the annual cycle. To examine the ecological mechanisms by which riparian assemblages are richer and support more individual birds, the number of ecological groups (foraging, nest-type and body mass groups) represented, and the species richness of these groups, was compared between riparian and non-riparian assemblages. The structurally complex vegetation and distinctive habitat features (e.g. aquatic environments, damp sheltered litter) provided in the riparian zone, resulted in the consistent addition of ecological groups to riparian assemblages (e.g. sheltered ground – invertebrates foraging group) compared with non-riparian assemblages. Greater species richness was accommodated in most foraging, nest-type and body mass groups in riparian than non-riparian assemblages. Riparian zones facilitated greater richness within ecological groups by providing conditions (i.e. more types of resources and greater abundance of resources) that promoted ecological segregation between ecologically similar species. For a set of commonly observed species, significant differences in their use of structural features, substrates and heights were registered between riparian and non-riparian habitats. The availability and dynamics of resources in riparian and non-riparian habitats were examined to determine if there is differential availability of particular resources, or in their temporal availability, throughout the annual cycle. Riparian zones supported more abundant and temporally reliable eucalypt flowering (i.e. nectar) than non-riparian habitats throughout the annual cycle. Riparian zones also supported an extensive loose bark resource (an important microhabitat for invertebrates) including more peeling bark and hanging bark throughout the year than at non-riparian sites. The productivity of eucalypts differed between habitat types, being higher in riparian zones at most times for all eucalypts combined, and for some species (e.g. Narrow-leaved Peppermint Eucalyptus radiata). Non-riparian habitats provided an abundant nectar resource (i.e. shrub flowering) at particular periods in the annual cycle. Birds showed clear relationships with the availability of specific food (i.e. nectar) and foraging resources (i.e. loose bark). The demonstration of a greater abundance of resources and higher primary productivity in riparian zones is consistent with the hypothesis that these linear strips that occupy only a small proportion of the landscape have a disproportionately high value for birds. Riparian zones in continuous eucalypt forest provide high quality habitats that contribute to the diversity of habitats and resources available to birds in the forest mosaic, with positive benefits for the landscape-level species pool. Despite riparian and non-riparian habitat supporting distinct assemblages of birds, strong linkages are maintained along the riparian-upslope gradient. Clearly, the maintenance of diverse and sustainable assemblages of birds in forest landscapes depends on complementary management of both riparian and non-riparian vegetation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bats correspond to 20% of the extant mammal species and, with a few exceptions, use echolocation, a spacial orientation system based on emission and analysis of echoes from sound waves, generally ultrasounds. Echolocation was discovered in the 1940 s and since the 1970 s ultrasound detectors have been commercially available, allowing the investigation of several aspects of the natural history and ecology of bats. Passive acoustic monitoring has been frequently used in habitat use studies, predominantly in North America and Europe, by comparing the number of bat passes between different habitat types. This dissertation presents the first evaluation of the spacial and seasonal variation patterns in the activity of insectivorous bats in the Brazilian biome Pampa, in the state of Rio Grande do Sul. Since bat activity can vary according to habitat type, time of year and climatic conditions, the following hypotheses were tested: 1. bat activity varies between different types of habitat; 2. bat activity varies seasonally; 3. bat activity is influenced by temperature, humidity and wind speed. The acoustic samples were taken along fixed transects of 1500 meters, which were monitored monthly from April 2009 to March 2010. Five habitat types were sampled: eucalypts, stream, riparian forest, wetland and grassland. In each sample, the number of bat passes was obtained by using an ultrasound detector Pettersson D230. A total of 1183 bat passes were registered. Greater bat activity levels was observed along large eucalypts (1.93 bat passes/3min) and along a stream (1.61 bat passes/3 min). A riparian forest (0.94 bat passes/3 min) and a wetland area (0.61 bat passes/3 min) exhibited statistically equal levels of activity. Bat passes were fewer in grassland areas (0,16 bat passes/3 min). Bat activity was not correlated with abiotic factors. However, bat activity was significantly low in the colder season, winter, and was similar in autumn, spring and summer. The observed preference for vegetation borders and water courses agrees with reports from other countries and is attributed predominantly to the high prey abundance in these types of environments. Additionally, low activity in the winter is probably a response to the reduced availability of insects, and to lower temperatures. Our results indicate which areas of arboreal vegetation and water courses should be priorities for the conservation of bats and that alterations of these habitat types might negatively influence bat activity in the region

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Jaú National Park is a large rain forest reserve that contains small populations of four caiman species. We sampled crocodilian populations during 30 surveys over a period of four years in five study areas. We found the mean abundance of caiman species to be very low (1.0 ± 0.5 caiman/km of shoreline), independent of habitat type (river, stream or lake) and season. While abundance was almost equal, the species' composition varied in different waterbody and study areas. We analysed the structure similarity of this assemblage. Lake and river habitats were the most similar habitats, and inhabited by at least two species, mainly Caiman crocodilus and Melanosuchus niger. However, those species can also inhabit streams. Streams were the most dissimilar habitats studied and also had two other species: Paleosuchus trigonalus and P. palpebrosus. The structure of these assemblage does not suggest a pattern of species associated and separated by habitat. Trends in species relationships had a negative correlation with species of similar size, C. crocodilus and P. trigonatus, and an apparent complete exclusion of M. niger and P. trigonatus. Microhabitat analysis suggests a slender habitat partitioning: P. trigonatus was absent from river and lake lgapo (flooded forest), but frequent in stream Igapó. This species was the most terrestrial and found in microhabitats similar to C crocodilus (shallow waters, slow current). Melanosuchus niger inhabits deep, fast moving waters in different study areas Despite inhabiting the same waterbodies in many surveys, M. niger and C. crocodilus did not share the same microhabitats. Paleosuchus palpebrosus was observed only in running waters and never in stagnant lake habitats. Cluster analysis revealed three survey groups: two constitute a mosaic in floodplains. (a) a cluster with both M. niger and C crocodilus, and another (b) with only C. crocodilus. A third cluster (c) included more species, and the presence of Paleosuchus species. There was no significant difference among wariness of caimans between disturbed and undisturbed localities. However, there was a clear trend to increase wariness during the course of consecutive surveys at four localities, suggesting that we, more than local inhabitants, had disturbed caimans. The factors that are limiting caiman populations can be independent of human exploitation. Currently in Amazonia, increased the pressure of hunting, habitat loss and habitat alteration, and there is no evidence of widespread recovery of caiman populations. In large reserves as Jaú without many disturbance, most caiman populations can be low density, suggesting that in blackwater environments their recovery from exploitation should be very slow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Marsh Antwren (Stymphalornis acutirostris) is restricted to the lowlands between Antonina Bay, in the coastal plain of the state of Paraná, and Itapocu river, in the northern coastal plain of the state of Santa Catarina (from 0 to c. 5 m a.s.l.). It doesn't occur continuously in this region, being found in eight populations that span over an total area of about 6,060 ha (= area of occupancy; 4,856.67 in Paraná and c. 1,200 in Santa Catarina). Nine habitat types used by the Marsh Antwren were defined, based on vegetation physiognomy, localization, dominancy of botanical species, dominant life-form and history of the region. Five of these are herbaceous (marshes), while four have an upper arboreal stratum and an herbaceous lower stratum with marsh plants. According to the classification criteria of the Brazilian vegetation proposed by the Radambrasil Project, they were classified as Pioneering Formation of Fluvial Influence, Pioneering Formation of Fluvial-marine Influence, and/or Pioneering Formation of Lacustrine Influence. They occur as patches or narrow strips ranging from 0.001 to 203.0 ha in the state of Paraná. They are found mainly in the interior of bays, in the lower courses of rivers that drain into bays, in alluvial plains, and between sand dunes in the coastal plain. Characteristic herbaceous species are cattail (Typha domingensis), bulrush (Scirpus californicus), Crinum salsum, Panicum sp. cf. P. mertensii, saw grass (Cladium mariscus) and Fuirena spp. Hibiscus pernambucensis is the characteristic bush species, and Calophyllum brasiliense, Tabebuia cassinoides, Annona glabra and Laguncularia racemosa are the characteristic arboreal species. The Marsh Antwren lives in herbaceous vegetation, but also uses bushes and branches of small tress. It has low flight capacity and a single flight of more than 25 m was never recorded. Territories of 0.25 ha were estimated in one kind of habitat (tidal marsh) (= 8 individuals per hectare) and of 3.2 ha in another one (saw grass marsh) (= 0.62 individual per hectare). The global population estimate is of about 17,700 mature individuals (13,700 in Paraná and 4,000 in Santa Catarina). The species is really under threat of extinction, mainly because of it's restricted geographical distribution and habitat loss by human activities and biological contamination caused by invasion of exotic grasses (Urochloa arrecta and Brachiaria mutica).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tropical rain forest conservation requires a good understanding of plant-animal interactions. Seed dispersal provides a means for plant seeds to escape competition and density-dependent seed predators and pathogens and to colonize new habitats. This makes the role and effectiveness of frugivorous species in the seed dispersal process an important topic. Northern pigtailed macaques (Macaca leonina) may be effective seed dispersers because they have a diverse diet and process seeds in several ways (swallowing, spitting out, or dropping them). To investigate the seed dispersal effectiveness of a habituated group of pigtailed macaques in Khao Yai National Park, Thailand, we examined seed dispersal quantity (number of fruit species eaten, proportion in the diet, number of feces containing seeds, and number of seeds processed) and quality (processing methods used, seed viability and germination success, habitat type and distance from parent tree for the deposited seeds, and dispersal patterns) via focal and scan sampling, seed collection, and germination tests. We found thousands of seeds per feces, including seeds up to 58 mm in length and from 88 fruit species. Importantly, the macaques dispersed seeds from primary to secondary forests, via swallowing, spitting, and dropping. Of 21 species, the effect of swallowing and spitting was positive for two species (i. e., processed seeds had a higher % germination and % viability than control seeds), neutral for 13 species (no difference in % germination or viability), and negative (processed seeds had lower % germination and viability) for five species. For the final species, the effect was neutral for spat-out seeds but negative for swallowed seeds. We conclude that macaques are effective seed dispersers in both quantitative and qualitative terms and that they are of potential importance for tropical rain forest regeneration. © 2013 Springer Science+Business Media New York.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four new species of Adenocalymma (Bignoniaceae, Bignonieae) from southeastern Brazil are described and illustrated: A. aurantiacum, characterized by dark orange and infundibuliform corolla; A. cinereum, characterized by shrubby habit, greyish inflorescence, infundibuliform corolla, and exserted stamens; A. gibbosum, characterized by gibbous and orange corolla and an inflorescence with dendritic trichomes; and A. sessile, characterized by sessile leaves and gibbous corolla. A discussion on the relationships of the new taxa and a key to all 29 species of Adenocalymma reported from southeastern Brazil are provided. © 2013 The Authors. Nordic Journal of Botany © 2013 Nordic Society Oikos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Communication contributes to mediate the interactions between plants and the animals that disperse their genes. As yet, seasonal patterns in plant-animal communication are unknown, even though many habitats display pronounced seasonality e.g. when leaves senescence. We thus hypothesized that the contrast between fruit displays and their background vary throughout the year in a seasonal habitat. If this variation is adaptive, we predicted higher contrasts between fruits and foliage during the fruiting season in a cerrado-savanna vegetation, southeastern Brazil. Based on a six-year data base of fruit ripening and a one-year data set of fruit biomass, we used reflectance measurements and contrast analysis to show that fruits with distinct colors differed in the beginning of ripening and the peak of fruit biomass. Black, and particularly red fruits, that have a high contrast against the leaf background, were highly seasonal, peaking in the wet season. Multicolored and yellow fruits were less seasonal, not limited to one season, with a bimodal pattern for yellow ones, represented by two peaks, one in each season. We further supported the hypothesis that seasonal changes in fruit contrasts can be adaptive because fruits contrasted more strongly against their own foliage in the wet season, when most fruits are ripe. Hence, the seasonal variation in fruit colors observed in the cerrado-savanna may be, at least partly, explicable as an adaptation to ensure high conspicuousness to seed dispersers. © 2013 The Authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os Heteroptera aquáticos e semi-aquáticos consistem em três infra-ordens monofiléticas, os Gerromorpha, Nepomorpha e Leptopodomorpha. No Brasil, existe um número bastante reduzido de literatura sobre este grupo, onde o estado de Minas Gerais concentra o maior número de estudos. Este trabalho objetivou determinar o efeito da intensidade de uso da terra sobre a comunidade de heterópteros aquáticos, infra-ordem Gerromorpha. A área de estudo está localizada na Fazenda Tanguro, estado do Mato Grosso, em uma faixa de transição entre os biomas Amazônia e Cerrado. Foram realizadas quatro expedições nos meses de maio e julho, nos anos de 2006 e 2007. As coletas foram realizadas ao longo de seis riachos de primeira ordem localizados em três áreas diferentes: campo de soja, pastagem e mata contínua. Foram encontrados 5 famílias, 19 gêneros, 36 espécies e 13 morfoespécies de Gerromorpha. As curvas médias de acumulação de espécies para cada uma das três áreas de estudo não atingiram a assíntota ao final da adição de amostras, mas demonstraram uma clara tendência a estabilização, sugerindo que um aumento do esforço amostral aproximaria o número de espécies observadas da realidade do local de estudo. Embora a cobertura vegetal tenha sido significativamente diferente entre as três áreas estudadas (ANOVA, F2,45= 23,72; P < 0,001), o tipo de hábitat não influenciou no número de espécies de Gerromorpha (ANOVA F3,44= 0,77; P = 0,52). Sete espécies apresentaram diferenças significativas entre os hábitats. Os dois eixos do MDS baseados na composição das espécies não separaram as espécies quanto ao tipo de hábitat. Para a matriz de abundância, o eixo 1 (MANOVA; F2,45 = 16,27; P < 0,001) e o eixo 2 (MANOVA; F2,45 = 6,31; P = 0,004) diferenciaram as espécies que ocorreram na área de mata contínua. Um total de 57,14% das espécies coletadas é compartilhado pelas três áreas de estudo. A sensível redução no número de indivíduos registrados da área mais conservada (mata contínua) para as áreas degradadas (plantio de soja e pastagem, respectivamente) possivelmente está relacionada à perda de cobertura vegetal observada nas áreas degradadas. As espécies Brachymetra lata, Brachymetra sp 1, Cylindrostethus palmaris, Tachygerris celocis, Rhagovelia paulana, e Rhagovelia whitei podem ser consideradas espécies indicadoras de áreas florestadas; e Neogerris lubricus pode ser indicadora de ambientes sem cobertura vegetal.