617 resultados para HYPERSENSITIVITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concerns about possible reactions to vaccines or vaccinations are frequently raised. However, the rate of reported vaccine-induced adverse events is low and ranges between 4.8-83.0 per 100,000 doses of the most frequently used vaccines. The number of true allergic reactions to routine vaccines is not known; estimations range from 1 per 500,000 to 1 per 1,000,000 doses for most vaccines. When allergens such as gelatine or egg proteins are components of the formulation, the rate for serious allergic reactions may be higher. Nevertheless, anaphylactic, potentially life-threatening reactions to vaccines are still a rare event (approximately 1 per 1,500,000 doses). The variety of reported vaccine-related adverse events is broad. Most frequently, reactions to vaccines are limited to the injection site and result from a non specific activation of the inflammatory system by, for example, aluminium salts or the active microbial components. If allergy is suspected, an accurate examination followed by algorithms is the key for correct diagnosis, treatment and the decision regarding revaccination in patients with immediate-type reactions to vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug hypersensitivity reactions can occur with most drugs, are unpredictable, may affect any organ or system, and range widely in clinical severity from mild pruritus to anaphylaxis. In most cases, the suspected drug is avoided in the future. However, for certain patients, the particular drug may be essential for optimal therapy. Under these circumstances, desensitization may be performed. Drug desensitization is defined as the induction of a temporary state of tolerance of a compound responsible for a hypersensitivity reaction. It is performed by administering increasing doses of the medication concerned over a short period of time (from several hours to a few days) until the total cumulative therapeutic dose is achieved and tolerated. It is a high-risk procedure used only in patients in whom alternatives are less effective or not available after a positive risk/benefit analysis. Desensitization protocols have been developed and are used in patients with allergic reactions to antibiotics (mainly penicillin), insulins, sulfonamides, chemotherapeutic and biologic agents, and many other drugs. Desensitization is mainly performed in IgE-mediated reactions, but also in reactions where drug-specific IgE have not been demonstrated. Desensitization induces a temporary tolerant state, which can only be maintained by continuous administration of the medication. Thus, for treatments like chemotherapy, which have an average interval of 4 weeks between cycles, the procedure must be repeated for every new course. In this paper, some background information on rapid desensitization procedures is provided. We define the drugs and drug reactions indicated for such procedures, describe the possible mechanism of action, and discuss the indications and contraindications. The data should serve as background information for a database (accessible via the EAACI-homepage) with standardized protocols for rapid desensitization for antibiotics, chemotherapeutic agents, monoclonal antibodies/fusion proteins, and other drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfonamides are generally classified into 2 groups: antibiotics and non-antibiotics. Recent studies showed that patients allergic to sulfonamide antibiotics do not have a specific risk for an allergy to sulfonamide non-antibiotic. However, the anti-inflammatory drug sulfasalazine represents an important exception. Used in rheumatic diseases, it is classified as a non-antibiotic sulfonamide, but is structurally related to antibiotic sulfonamides. Therefore, we aimed to analyze in vitro the cross-reactivity between the antimicrobial sulfamethoxazole and the anti-inflammatory drug sulfasalazine.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation of 5-hydroxytryptamine-3 (5-HT-3) receptors in spinal cord can enhance intrinsic spinal mechanisms of central hypersensitivity, possibly leading to exaggerated pain responses. Clinical studies suggest that 5-HT-3 receptor antagonists may have an analgesic effect. This randomized, double-blind, placebo-controlled crossover study tested the hypothesis that the 5-HT-3 receptor antagonist tropisetron attenuates pain and central hypersensitivity in patients with chronic low back pain. Thirty patients with chronic low back pain, 15 of whom were women (aged 53 ± 14 years) and 15 men (aged 48 ± 14 years), were studied. A single intravenous injection of 0.9% saline solution, tropisetron 2mg, and tropisetron 5mg was administrated in 3 different sessions, in a double-blind crossover manner. The main outcome was the visual analogue scale (VAS) score of spontaneous low back pain before, and 15, 30, 60, and 90 minutes after drug administration. Secondary outcomes were nociceptive withdrawal reflexes to single and repeated electrical stimulation, area of reflex receptive fields, pressure pain detection and tolerance thresholds, conditioned pain modulation, and area of clinical pain. The data were analyzed by analysis of variance and panel multiple regressions. All 3 treatments reduced VAS scores. However, there was no statistically significant difference between tropisetron and placebo in VAS scores. Compared to placebo, tropisetron produced a statistically significant increase in pain threshold after single electrical stimulation, but no difference in all other secondary outcomes was found. A single-dose intravenous administration of tropisetron in patients with chronic low back pain had no significant specific effect on intensity of pain and most parameters of central hypersensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Up to 10% of patients with severe immune-mediated drug hypersensitivity reactions have tendencies to develop multiple drug hypersensitivities (MDH). The reason why certain individuals develop MDH and the underlying pathomechanism are unclear. We investigated different T cell subpopulations in MDH patients and compared them with patients allergic to a single drug and with healthy controls (HC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In drug hypersensitivity, change of drug treatment and continuation with a new drug may result in reappearance of drug hypersensitivity symptoms. This is not uncommon in patients with chronic infections requiring continued and long-lasting antibiotic treatments. For the clinician, the question arises whether these symptoms are due to cross-reactivity, are due to a new sensitization or are a reflection of a multiple drug hypersensitivity syndrome. Based on the p-i concept (pharmacological interaction with immune receptors), we propose that the efficient stimulation of T cells by a drug is the sum of drug-T-cell receptor affinity and readiness of the T cell to react, and therefore not constant. It heavily depends on the state of underlying immune activation. Consequently, drug hypersensitivity diseases, which go along with massive immune stimulations and often high serum cytokine values, are themselves risk factors for further drug hypersensitivity. The immune stimulation during drug hypersensitivity may, similar to generalized virus infections, lower the threshold of T-cell reactivity to drugs and cause rapid appearance of drug hypersensitivity symptoms to the second drug. We call the second hypersensitivity reaction a "flare-up" reaction; this is clinically important, as in most cases the second drug may be tolerated again, if the cofactors are missing. Moreover, the second treatment is often too short to cause a relevant sensitization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug hypersensitivity research has progressed enormously in recent years, and a greater understanding of mechanisms has contributed to improved drug safety. Progress has been made in genetics, enabling personalized medicine for certain drugs, and in understanding drug interactions with the immune system. In a recent meeting in Rome, the clinical, chemical, pharmacologic, immunologic, and genetic aspects of drug hypersensitivity were discussed, and certain aspects are briefly summarized here. Small chemicals, including drugs, can induce immune reactions by binding as a hapten to a carrier protein. Park (Liverpool, England) demonstrated (1) that drug haptens bind to protein in patients in a highly restricted manner and (2) that irreversibly modified carrier proteins are able to stimulate CD4(+) and CD8(+) T cells from hypersensitive patients. Drug haptens might also stimulate cells of the innate immune system, in particular dendritic cells, and thus give rise to a complex and complete immune reaction. Many drugs do not have hapten-like characteristics but might gain them on metabolism (so-called prohaptens). The group of Naisbitt found that the stimulation of dendritic cells and T cells can occur as a consequence of the transformation of a prohapten to a hapten in antigen-presenting cells and as such explain the immune-stimulatory capacity of prohaptens. The striking association between HLA-B alleles and the development of certain drug reactions was discussed in detail. Mallal (Perth, Australia) elegantly described a highly restricted HLA-B∗5701-specific T-cell response in abacavir-hypersensitive patients and healthy volunteers expressing HLA-B∗5701 but not closely related alleles. Expression of HLA-B∗1502 is a marker known to be necessary but not sufficient to predict carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in Han Chinese. The group of Chen and Hong (Taiwan) described the possible "missing link" because they showed that the presence of certain T-cell receptor (TCR) clonotypes was necessary to elicit T-cell responses to carbamazepine. The role of TCRs in drug binding was also emphasized by Pichler (Bern, Switzerland). Following up on their "pharmacological interactions of drugs with immune receptors" concept (p-i concept), namely that drugs can bind directly to TCRs, MHC molecules, or both and thereby stimulate T cells, they looked for drug-binding sites for the drug sulfamethoxazole in drug-specific TCRs: modeling revealed up to 7 binding sites on the CDR3 and CDR2 regions of TCR Vα and Vβ. Among many other presentations, the important role of regulatory T cells in drug hypersensitivity was addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbamazepine causes various forms of hypersensitivity reactions, ranging from maculopapular exanthema to severe blistering reactions. The HLA-B*1502 allele has been shown to be strongly correlated with carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS-TEN) in the Han Chinese and other Asian populations but not in European populations.