862 resultados para HVSFS TIO2 COATINGS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how the brain works will require tools capable of measuring neuron elec-trical activity at a network scale. However, considerable progress is still necessary to reliably increase the number of neurons that are recorded and identified simultaneously with existing mi-croelectrode arrays. This project aims to evaluate how different materials can modify the effi-ciency of signal transfer from the neural tissue to the electrode. Therefore, various coating materials (gold, PEDOT, tungsten oxide and carbon nano-tubes) are characterized in terms of their underlying electrochemical processes and recording ef-ficacy. Iridium electrodes (177-706 μm2) are coated using galvanostatic deposition under different charge densities. By performing electrochemical impedance spectroscopy in phosphate buffered saline it is determined that the impedance modulus at 1 kHz depends on the coating material and decreased up to a maximum of two orders of magnitude for PEDOT (from 1 MΩ to 25 kΩ). The electrodes are furthermore characterized by cyclic voltammetry showing that charge storage capacity is im-proved by one order of magnitude reaching a maximum of 84.1 mC/cm2 for the PEDOT: gold nanoparticles composite (38 times the capacity of the pristine). Neural recording of spontaneous activity within the cortex was performed in anesthetized rodents to evaluate electrode coating performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nature has developed strategies to present us with a wide variety of colours, from the green of leaves to the bright colours seen in flowers. Anthocyanins are between these natural pigments that are responsible for the great diversity of colours seen in flowers and fruits. Anthocyanins have been used to sensitize titanium dioxide (TiO2) in Dye-Sensitized Solar Cells (DSSCs). DSSCs have become one of the most popular research topic in photovoltaic cells due to their low production costs when compared to other alternatives. DSSCs are inspired in what happens in nature during photosynthesis. A primary charge separation is achieved by means of a photoexcited dye capable of performing the electron injection into the conduction band of a wide band-gap semiconductor, usually TiO2. With this work we aimed to synthesize a novel mesoporous TiO2 structure as the semiconductor in order to increase the dye loading. We used natural occurring dyes such as anthocyanins and their synthetic flavylium relatives, as an alternative to the widely used metal complexes of Ru(II) which are expensive and are environmentally unsafe. This offers not only the chance to use safer dyes for DSSCs, but also to take profit of waste biological products, such as wine and olive oil production residues that are heavily loaded with anthocyanin dyes. We also performed a photodegradation study using TiO2 as the catalyst to degrade dye contaminants, such as those from the wine production waste, by photo-irradiation of the system in the visible region of the light spectrum. We were able to succeed in the synthesis of mesoporous TiO2 both powder and thin film, with a high capacity to load a large amount of dye. We proved the concept of photodegradation using TiO2 as catalyst. And finally, we show that wine production waste is a possible dye source to DSSCs application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occupational risks in the nanotechnology research laboratories are an important topic since a great number of researchers are involved in this area. The risk assessment performed by both qualitative and quantitative methods is a necessary step for the management of the occupational risks. Risk assessment could be performed by qualitative methods that gather consensus in the scientific community. It is also possible to use quantitative methods, based in different technics and metrics, as indicative exposure limits are been settled by several institutions. While performing the risk assessment, the information on the materials used is very important and, if it is not updated, it could create a bias in the assessment results. The exposure to TiO2 nanoparticles risk was assessed in a research laboratory using a quantitative exposure method and qualitative risk assessment methods. It was found the results from direct-reading Condensation Particle Counter (CPC) equipment and the CB Nanotool seem to be related and aligned, while the results obtained from the use of the Stoffenmanager Nano seem to indicate a higher risk level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the role of the polymeric binder on the properties and performance of an intumescent coating. Waterborne resins of different types (vinylic, acrylic, and styrene-acrylic) were incorporated in an intumescent paint formulation, and characterized extensively in terms of thermal degradation behavior, intumescence thickness, and thermal insulation. Thermal microscopy images of charred foam development provided further information on the particular performance of each type of coating upon heating. The best foam expansion and heat protection results were obtained with the vinyl binders. Rheological measurements showed a complex evolution of the viscoelastic characteristics of the materials with temperature. As an example, the vinyl binders unexpectedly hardened significantly after thermal degradation. The values of storage moduli obtained at the onset of foam blowing (melamine decomposition) were used to explain different intumescence expansion behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the changes in the structural and morphological features occurring in a particular type of nanocomposite thin-film system, composed of Au nanoparticles (NPs) dispersed in a host TiO2 dielectric matrix. The structural and morphological changes, promoted by in-vacuum annealing experiments of the as-deposited thin films at different temperatures (ranging from 200 to 800 C), resulted in a well-known localized surface plasmon resonance (LSPR) phenomenon, which gave rise to a set of different optical responses that can be tailored for a wide number of applications, including those for optical-based sensors. The results show that the annealing experiments enabled a gradual increase of the mean grain size of the Au NPs (from 2 to 23 nm), and changes in their distributions and separations within the dielectric matrix. For higher annealing temperatures of the as-deposited films, a broad size distribution of Au NPs was found (sizes up to 100 nm). The structural conditions necessary to produce LSPR activity were found to occur for annealing experiments above 300 C, which corresponded to the crystallization of the gold NPs, with an average size strongly dependent on the annealing temperature itself. The main factor for the promotion of LSPR was the growth of gold NPs and their redistribution throughout the host matrix. On the other hand, the host matrix started to crystallize at an annealing temperature of about 500 C, which is an important parameter to explain the shift of the LSPR peak position to longer wavelengths, i.e. a red-shift.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, antibacterial properties are becoming a viable feature to be introduced in biomaterials due to the possibility of modifying the materials' surface used in medical devices in a micro/nano metric scale. As a result, it is mandatory to understand the mechanisms of the antimicrobial agents currently used and their possible failures. In this work, the antibacterial activity of ZrCNAg films is studied, taking into consideration the ability of silver nanoparticles to be dissolved when embedded into a ceramic matrix. The study focuses on the silver release evaluated by glow discharge optical emission spectroscopy and the effect of the fluid composition on this release. The results revealed a very low silver release of the films, leading to non-antibacterial activity of such materials. The silver release was found to be dependent on the electrolyte composition. NaCl (8.9 g L? 1) showed the lowest spontaneously silver ionization, while introducing the sulfates in Hanks' balanced salt solution (HBSS) such ionization is increased; finally, the proteins incorporated to the (HBSS) showed a reduction of the silver release, which also explains the low ionization in the culture medium (tryptic soy broth) that contains high quantities of proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exceptional properties of localised surface plasmons (LSPs), such as local field enhancement and confinement effects, resonant behavior, make them ideal candidates to control the emission of luminescent nanoparticles. In the present work, we investigated the LSP effect on the steady-state and time-resolved emission properties of quantum dots (QDs) by organizing the dots into self-assembled dendrite structures deposited on plasmonic nanostructures. Self-assembled structures consisting of water-soluble CdTe mono-size QDs, were developed on the surface of co-sputtered TiO2 thin films doped with Au nanoparticles (NPs) annealed at different temperatures. Their steady-state fluorescence properties were probed by scanning the spatially resolved emission spectra and the energy transfer processes were investigated by the fluorescence lifetime imaging (FLIM) microscopy. Our results indicate that a resonant coupling between excitons confined in QDs and LSPs in Au NPs located beneath the self-assembled structure indeed takes place and results in (i) a shift of the ground state luminescence towards higher energies and onset of emission from excited states in QDs, and (ii) a decrease of the ground state exciton lifetime (fluorescence quenching).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia de Materiais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic-inorganic hybrid (OIH) sol-gel coatings based on ureasilicates (U(X)) have promising properties for use as eco-friendly coatings on hot dip galvanized steel (HDGS) and may be considered potential substitutes for pre-treatment systems containing Cr(VI). These OIH coatings reduce corrosion activity during the initial stages of contact of the HDGS samples with highly alkaline environments (cementitious media) and allow the mitigation of harmful effects of an initial excessive reaction between cement pastes and the zinc layer. However, the behavior of HDGS coated with U(X) in the presence of chloride ions has never been reported. In this paper, the performance of HDGS coated with five different U(X) coatings was assessed by electrochemical measurements in chloride-contaminated simulated concrete pore solution (SCPS). U(X) sol-gel coatings were produced and deposited on HDGS by a dip coating method. The coatings performance was evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization curves measurements, macrocell current density and polarization resistance in contact with chloride-contaminated SCPS. The SEM/EDS analyses of the coatings before and after the tests were also performed. The results showed that the HDGS samples coated with the OIH coatings exhibited enhanced corrosion resistance to chloride ions when compared to uncoated galvanized steel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work it was studied the possible use of thin films, composed of Au nanoparticles (NPs) embedded in a TiO2 matrix, in biological applications, by evaluating their interaction with a well-known protein, Bovine Serum Albumin (BSA), as well as with microbial cells (Candida albicans). The films were produced by one-step reactive DC magnetron sputtering followed by heat-treatment. The samples revealed a composition of 8.3 at.% of Au and a stoichiometric TiO2 matrix. The annealing promoted grain size increase of the Au NPs from 3 nm (at 300 °C) to 7 nm (at 500 °C) and a progressive crystallization of the TiO2 matrix to anatase. A broad localized surface plasmon resonance (LSPR) absorption band (λ = 580–720 nm) was clearly observed in the sample annealed at 500 °C, being less intense at 300 °C. The biological tests indicated that the BSA adhesion is dependent on surface nanostructure morphology, which in turn depends on the annealing temperature that changed the roughness and wettability of the films. The Au:TiO2 thin films also induced a significant change of the microbial cell membrane integrity, and ultimately the cell viability, which in turn affected the adhesion on its surface. The microstructural changes (structure, grain size and surface morphology) of the Au:TiO2 films promoted by heat-treatment shaped the amount of BSA adhered and affected cell viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artigo completo publicado na revista "Journal of The Electrochemical Society" 160:10 (2013) 467-479 e disponível no RepositóriUM em: http://hdl.handle.net/1822/33855

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artigo completo publicado na revista "Journal of The Electrochemical Society" 161:6 (2014) C349-C362 e disponível no RepositóriUM em: http://hdl.handle.net/1822/33784

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artigo completo publicado na revista "Journal of The Electrochemical Society" 161:6 (2014) C349-C362 e disponível no RepositóriUM em: http://hdl.handle.net/1822/33784. Errata disponível no RepositóriUM em: http://hdl.handle.net/1822/40064. (Publisher’s note: An erratum that addressed the errors in Figure 9 was originally published on Dec. 10, 2014, however the graphs in that erratum were not correct.)