973 resultados para HIGH-PURITY ALUMINUM
Resumo:
Calcium-dependent protein kinases (CDPKs) are serine/threonine kinases that react in response to calcium which functions as a trigger for several mechanisms in plants and invertebrates, but not in mammals. Recent structural studies have defined the role of calcium in the activation of CDPKs and have elucidated the important structural changes caused by calcium in order to allow the kinase domain of CDPK to bind and phosphorylate the substrate. However, the role of autophosphorylation in CDPKs is still not fully understood. In Plasmodium falciparum, seven CDPKs have been identified by sequence comparison, and four of them have been characterized and assigned to play a role in parasite motility, gametogenesis and egress from red blood cells. Although PfCDPK2 was already discovered in 1997, little is known about this enzyme and its metabolic role. In this work, we have expressed and purified PfCDPK2 at high purity in its unphosphorylated form and characterized its biochemical properties. Moreover, propositions about putative substrates in P. falciparum are made based on the analysis of the phosphorylation sites on the artificial substrate myelin basic protein (MBP).
Resumo:
The quality of semi-detailed (scale 1:100.000) soil maps and the utility of a taxonomically based legend were assessed by studying 33 apparently homogeneous fields with strongly weathered soils in two regions in São Paulo State: Araras and Assis. An independent data set of 395 auger sites was used to determine purity of soil mapping units and analysis of variance within and between mapping units and soil classification units. Twenty three soil profiles were studied in detail. The studied soil maps have a high purity for some legend criteria, such as B horizon type (> 90%) and soil texture class (> 80%). The purity for the "trophic character" (eutrophic, dystrophic, allic) was only 55% in Assis. It was 88% in Araras, where many soil units had been mapped as associations. In both regions, the base status of clay-textured soils was generally better than suggested by the maps. Analysis of variance showed that mapping was successful for "durable" soil characteristics such as clay content (> 80% of variance explained) and cation exchange capacity (≥ 50% of variance explained) of 0-20 and 60-80 cm layers. For soil characteristics that are easily modified by management, such as base saturation of the 0-20 cm layer, the maps had explained very little (< 15%) of the total variance in the study areas. Intermediate results were obtained for base saturation of the 60-80 cm layer (56% in Assis; 42% in Araras). Variance explained by taxonomic groupings that formed the basis for the legend of the soil maps was similar to, often even smaller than, variance explained by mapping units. The conclusion is that map boundaries have been very carefully located, but descriptions of mapping units could be improved. In future mappings, this could possibly be done at low cost by (a) bulk sampling to remove short range variation and enhance visualization of spatial patterns at distances > 100 m; (b) taking advantage of correlations between easily measured soil characteristics and chemical soil properties and, (c) unbending the link between legend criteria and a taxonomic system. The maps are well suited to obtain an impression of land suitability for high-input farming. Additional field work and data on former land use/management are necessary for the evaluation of chemical properties of surface horizons.
Resumo:
The major objective of this research project was to investigate the chemistry and morphology of portland cement concrete pavements in Iowa. The integrity of the various pavements was evaluated qualitatively, based on the presence or absence of microcracks, the presence or absence of sulfate minerals, and the presence or absence of alkali-silica gel(s). Major equipment delays and subsequent equipment replacements resulted in significant delays over the course of this research project. However, all these details were resolved and the equipment is currently in place and fully operational. The equipment that was purchased for this project included: (I) a LECO VP 50, 12-inch diameter, variable speed grinder/polisher: (2) a Hitachi S-2460N variable pressure scanning electron microscope; and (3) a OXFORD Instruments Link ISIS microanalysis system with a GEM (high-purity germanium) X-ray detector. This study has indicated that many of the concrete pavements contained evidence of multiple deterioration mechanisms: and hence, the identification of a single reason for the distress that was observed in any given pavement typically had to be based on opinion rather than empirical evidence.
Resumo:
The major objective of this research project was to investigate the chemistry and morphology of portland cement concrete pavements in Iowa. The integrity of the various pavements was evaluated qualitatively, based on the presence or absence of microcracks, the presence or absence of sulfate minerals, and the presence or absence of alkali-silica gel(s). Major equipment delays and subsequent equipment replacements resulted in significant delays over the course of this research project. However, all these details were resolved and the equipment is currently in place and fully operational. The equipment that was purchased for this project included: ( I ) a LECO VP 50, 12-inch diameter, variable speed grinder/polisher: (2) a Hitachi S-2460N variable pressure scanning electron microscope; and (3) a OXFORD Instruments Link ISIS microanalysis system with a GEM (high-purity germanium) X-ray detector. This study has indicated that many of the concrete pavements contained evidence of multiple deterioration mechanisms: and hence, the identification of a single reason for the distress that was observed in any given pavement typically had to be based on opinion rather than empirical evidence.
Resumo:
The formation of silicon particles in rf glow discharges has attracted attention due to their effect as a contaminant during film deposition or etching. However, silicon and silicon alloy powders produced by plasma¿enhanced chemical vapor deposition (PECVD) are promising new materials for sintering ceramics, for making nanoscale filters, or for supporting catalytic surfaces. Common characteristics of these powders are their high purity and the easy control of their stoichiometry through the composition of the precursor gas mixture. Plasma parameters also influence their structure. Nanometric powders of silicon¿carbon alloys exhibiting microstructural properties such as large hydrogen content and high surface/volume ratio have been produced in a PECVD reactor using mixtures of silane and methane at low pressure (-1 Torr) and low frequency square¿wave modulated rf power (13.56 MHz). The a¿Si1¿xCx:H powders were obtained from different precursor gas mixtures, from R=0.05 to R=9, where R=[SiH4]/([SiH4]+[CH4]). The structure of the a¿Si1¿xCx:H powder was analyzed by several techniques. The particles appeared agglomerated, with a wide size distribution between 5 and 100 nm. The silane/methane gas mixture determined the vibrational features of these powders in the infrared. Silicon-hydrogen groups were present for every gas composition, whereas carbon¿hydrogen and silicon¿carbon bonds appeared in methane¿rich mixtures (R-0.6). The thermal desorption of hydrogen revealed two main evolutions at about 375 and 660¿°C that were ascribed to hydrogen bonded to silicon and carbon, respectively. The estimated hydrogen atom concentration in the sample was about 50%.
Resumo:
Nicotine in a smoky indoor air environment can be determined using graphitized carbon black as a solid sorbent in quartz tubes. The temperature stability, high purity, and heat absorption characteristics of the sorbent, as well as the permeability of the quartz tubes to microwaves, enable the thermal desorption by means of microwaves after active sampling. Permeation and dynamic dilution procedures for the generation of nicotine in the vapor phase at low and high concentrations are used to evaluate the performances of the sampler. Tube preparation is described and the microwave desorption temperature is measured. Breakthrough volume is determined to allow sampling at 0.1-1 L/min for definite periods of time. The procedure is tested for the determination of gas and paticulate phase nicotine in sidestream smoke produced in an experimental chamber.
Resumo:
Tässä työssä on tutkittu ammoniakin ja hiilidioksidin erottamista adsorptio prosessilla ja suunniteltiin paineen muunteluun perustuvan adsorptioprosessin (PSA) käyttöä. Työn tarkoituksena oli laskea adsorptioon perustuvan prosessin kannattavuus melamiinitehtaan poistokaasujen erotuksessa. Tätä varten työssä suunniteltiin tehdasmitta-kaavainen prosessi ja arvioitiin sen kannattavuus. Työssä mitattiin adsorptiotasapainot, joiden perusteella sovitettiin sopiva kokeellinen adsorptioisotermi. Adsorptioisotermi lisättiin simulointiohjelmaan, jonka avulla suunniteltiin kaksi vaihtoehtoista pilot laitteistoa kaasujen erottamiseksi. Toisella pilot laitteistolla saadaan mitattua vain läpäisykäyrät, mutta paremmalla versiolla saadaan myös tietoa erotettujen komponenttien puhtaudesta. Suunnittelun tärkeimpiä lähtökohtia on molempien komponenttien mahdollisimman korkea puhtaus ja talteenottoaste. Täysimittakaavainen tehdas suunniteltiin simulointiohjelmiston avulla kahdelle eri kapasiteetille ja arvioitiin niiden kustannukset ja kannattavuus. Adsorptioprosessit osoittautuivat kannattaviksi kaasuseoksen erottamisessa kummassakin tapauksessa
Resumo:
The metal-catalyzed autooxidation of S(IV) has been studied for more than a century without a consensus being obtained as to reaction rates, rate laws or mechanisms. The main objective in this work was to explore the reaction between Cu(II) and SO2 in the presence of M(II), paying special attention to the formation of double sulfites like Cu2SO3.M(II)SO3.2H 2O. The two principal aspects studied were: i) a new way to prepare double sulfites with high purity degree and the selectivity in the M(II) incorporation during the salt formation.
Resumo:
Studies of the use of a soil from river Pardo basin located at the Ribeirão Preto region, were realized with the aim of preparing catalysts. A clay, high purity kaolin type, was obtained after purification followed by treatment with acid and then calcined. The activity and selectivity of the catalysts were determined using cycloexene as substrate. The majority of the catalysts obtained yield a conversion higher than 70%.
Resumo:
A method is described for recovering and purifying 241Am from lightning-conductors and smoke detectors. The method is based on the precipitation of silver, as AgCl, the main impurity, and extraction of americium with TBP. Further purification with ion-exchange resin is also used. The results have shown that by this method the americium is obtained with high purity.
Resumo:
Macroscopic samples of fullerene nanostructures are obtained in a modified arc furnace using the electric arc method with a Helium atmosphere at low pressures. High purity graphite rods are used as electrodes but, when drilled and the orifices filled with powders of transition metals (Fe, Co, Ni) acting as catalysts, the resulting particles are carbon nanostructures of the fullerene family, known as Single Wall Nanotubes (SWNTs). They have typical diameters of 1.4 nm, lengths up to tenths of microns and they are arranged together in bundles containing several SWNTs. Those samples are observed and analyzed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques.
Resumo:
This work presents a study on the separation of Fe(III) and Ti(IV) from sulfuric acid leaching solutions of ilmenite (FeTiO3) using liquid-liquid extraction with D2EHPA in n-dodecane as extracting agent. The distribution coefficients (K D) of the elements related to free acidity and concentration of Fe(III) and Ti(IV) were determined. Free acidity was changed from 3x10-2 to 11.88 mol L-1 and D2EHPA concentration was fixed at 1.5 mol L-1. Recovery of final products as well as recycling of wastes generated in the process were also investigated. The LLE process as a feasible alternative to obtain high-purity TiO2.
Resumo:
PEGylation has become a widely applied technique to enhancing in vitro and in vivo stability of therapeutic proteins and to increasing materials biocompatibility. PEG branched structures have proven useful for protein and peptide modification. Furthermore, they may be better than linear structures for many purposes. This paper describes an improved procedure for obtaining 2-arms PEG based on L-lysine. The efficiency of the synthesis was not related to moisture of the raw materials. This procedure does not use hazardous reagents as previous protocols do. It implemented a purification process for obtaining the desired structure with high purity ( > 99%). Finally, the procedure described here allows the obtaining of others PEGylation reagents.
Resumo:
Ethyl tert-butyl ether (ETBE) is produced by commercial processes to a purity of up to 96%. In recent years, several companies have started to produce ETBE, increasing the demand for standards with higher grades of purity in the area of production control and final product certification. The present work involved the development of a purification protocol for obtaining high purity ETBE from the commercial product used in the formulation of automotive gasolines, using a spinning band distillation column. The ETBE thus produced showed a purity of over 99.5%, its main contaminant being its isomer, ethyl-sec-butyl ether (ESBE).
Resumo:
The nutritional and functional benefits offered by whey protein α-lactalbumin justify the great interest in its manufacture in large quantities at a high purity level. Hydroxyapatite is a calcium phosphate material able to adsorb proteins and can be synthesized at low production cost. Therefore, this work evaluated the adsorption of α-lactalbumin on hydroxyapatite using solid-liquid phase equilibrium data reported as adsorption isotherms. Van't Hoff's thermodynamics analysis showed that the adsorption process is entropically driven.