881 resultados para HIGH-ALTITUDE EXPOSURE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: Individuals susceptible to high-altitude pulmonary edema (HAPE) are characterized by exaggerated pulmonary hypertension and arterial hypoxemia at high altitude, but the underlying mechanism is incompletely understood. Anecdotal evidence suggests that shunting across a patent foramen ovale (PFO) may exacerbate hypoxemia in HAPE. OBJECTIVE: We hypothesized that PFO is more frequent in HAPE-susceptible individuals and may contribute to more severe arterial hypoxemia at high altitude. DESIGN, SETTING, AND PARTICIPANTS: Case-control study of 16 HAPE-susceptible participants and 19 mountaineers resistant to this condition (repeated climbing to peaks above 4000 m and no symptoms of HAPE). MAIN OUTCOME MEASURES: Presence of PFO determined by transesophageal echocardiography, estimated pulmonary artery pressure by Doppler echocardiography, and arterial oxygen saturation measured by pulse oximetry in HAPE-susceptible and HAPE-resistant participants at low (550 m) and high altitude (4559 m). RESULTS: The frequency of PFO was more than 4 times higher in HAPE-susceptible than in HAPE-resistant participants, both at low altitude (56% vs 11%, P = .004; odds ratio [OR], 10.9 [95% confidence interval {CI}, 1.9-64.0]) and high altitude (69% vs 16%, P = .001; OR, 11.7 [95% CI, 2.3-59.5]). At high altitude, mean (SD) arterial oxygen saturation prior to the onset of pulmonary edema was significantly lower in HAPE-susceptible participants than in the control group (73% [10%] vs 83% [7%], P = .001). Moreover, in the HAPE-susceptible group, participants with a large PFO had more severe arterial hypoxemia (65% [6%] vs 77% [8%], P = .02) than those with smaller or no PFO. CONCLUSIONS: Patent foramen ovale was roughly 4 times more frequent in HAPE-susceptible mountaineers than in participants resistant to this condition. At high altitude, HAPE-susceptible participants with a large PFO had more severe hypoxemia. We speculate that at high altitude, a large PFO may contribute to exaggerated arterial hypoxemia and facilitate HAPE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulmonary edema is a problem of major clinical importance resulting from a persistent imbalance between forces that drive water into the airspace of the lung and the biological mechanisms for its removal. Here, we will review the fundamental mechanisms implicated in the regulation of alveolar fluid homeostasis. We will then describe the perturbations of pulmonary fluid homeostasis implicated in the pathogenesis of pulmonary edema in conditions associated with increased pulmonary capillary pressure, namely cardiogenic pulmonary edema and high-altitude pulmonary edema (HAPE), with particular emphasis on the latter that has provided important new insight into underlying mechanisms of pulmonary edema. We will provide evidence that impaired pulmonary endothelial and epithelial nitric oxide synthesis and/or bioavailability may represent a central underlying defect predisposing to exaggerated hypoxic pulmonary vasoconstriction, and, in turn, capillary stress failure and alveolar fluid flooding. We will then demonstrate that exaggerated pulmonary hypertension, while possibly a prerequisite, may not always be sufficient to cause HAPE, and how defective alveolar fluid clearance may represent a second important pathogenic mechanism. Finally, we will outline, how this new insight gained from studies in HAPE, may be translated into the management of pulmonary edema and hypoxemia related disease states in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High altitude constitutes an exciting natural laboratory for medical research. Over the past decade, it has become clear that the results of high-altitude research may have important implications not only for the understanding of diseases in the millions of people living permanently at high altitude, but also for the treatment of hypoxemia-related disease states in patients living at low altitude. High-altitude pulmonary edema (HAPE) is a life-threatening condition occurring in predisposed, but otherwise healthy subjects, and, therefore, allows to study underlying mechanisms of pulmonary edema in humans, in the absence of confounding factors. Over the past decade, evidence has accumulated that HAPE results from the conjunction of two major defects, augmented alveolar fluid flooding resulting from exaggerated hypoxic pulmonary hypertension, and impaired alveolar fluid clearance related to defective respiratory transepithelial sodium transport. Here, after a brief presentation of the clinical features of HAPE, we review this novel concept. We provide experimental evidence for the novel concept that impaired pulmonary endothelial and epithelial nitric oxide synthesis and/or bioavailability may represent the central underlying defect predisposing to exaggerated hypoxic pulmonary vasoconstriction and alveolar fluid flooding. We demonstrate that exaggerated pulmonary hypertension, while possibly a condition sine qua non, may not be sufficient to cause HAPE, and how defective alveolar fluid clearance may represent a second important pathogenic mechanism. Finally, we outline how this insight gained from studies in HAPE may be translated into the management of hypoxemia related disease states in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is evidence that high altitude populations may be better protected from hypoxic pulmonary hypertension than low altitude natives, but the underlying mechanism is incompletely understood. In Tibetans, increased pulmonary respiratory NO synthesis attenuates hypoxic pulmonary hypertension. It has been speculated that this mechanism may represent a generalized high altitude adaptation pattern, but direct evidence for this speculation is lacking. We therefore measured systolic pulmonary-artery pressure (Doppler chocardiography) and exhaled nitric oxide (NO) in 34 healthy, middle-aged Bolivian high altitude natives and in 34 age- and sex-matched, well-acclimatized Caucasian low altitude natives living at high altitude (3600 m). The mean+/-SD systolic right ventricular to right atrial pressure gradient (24.3+/-5.9 vs. 24.7+/-4.9 mmHg) and exhaled NO (19.2+/-7.2 vs. 22.5+/-9.5 ppb) were similar in Bolivians and Caucasians. There was no relationship between pulmonary-artery pressure and respiratory NO in the two groups. These findings provide no evidence that Bolivian high altitude natives are better protected from hypoxic pulmonary hypertension than Caucasian low altitude natives and suggest that attenuation of pulmonary hypertension by increased respiratory NO synthesis may not represent a universal adaptation pattern in highaltitude populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive studies suggest that healthy children living at high altitude display pulmonary hypertension, but the data to support this assumption are sparse. Nitric oxide (NO) synthesized by the respiratory epithelium regulates pulmonary artery pressure, and its synthesis was reported to be increased in Aymara high-altitude dwellers. We hypothesized that pulmonary artery pressure will be lower in Aymara children than in children of European ancestry at high altitude, and that this will be related to increased respiratory NO. We therefore compared pulmonary artery pressure and exhaled NO (a marker of respiratory epithelial NO synthesis) between large groups of healthy children of Aymara (n = 200; mean +/- SD age, 9.5 +/- 3.6 years) and European ancestry (n = 77) living at high altitude (3,600 to 4,000 m). We also studied a group of European children (n = 29) living at low altitude. The systolic right ventricular to right atrial pressure gradient in the Aymara children was normal, even though significantly higher than the gradient measured in European children at low altitude (22.5 +/- 6.1 mm Hg vs 17.7 +/- 3.1 mm Hg, p < 0.001). In children of European ancestry studied at high altitude, the pressure gradient was 33% higher than in the Aymara children (30.0 +/- 5.3 mm Hg vs 22.5 +/- 6.1 mm Hg, p < 0.0001). In contrast to what was expected, exhaled NO tended to be lower in Aymara children than in European children living at the same altitude (12.4 +/- 8.8 parts per billion [ppb] vs 16.1 +/- 11.1 ppb, p = 0.06) and was not related to pulmonary artery pressure in either group. Aymara children are protected from hypoxic pulmonary hypertension at high altitude. This protection does not appear to be related to increased respiratory NO synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: Acute mountain sickness (AMS) can result in pulmonary and cerebral oedema with overperfusion of microvascular beds, elevated hydrostatic capillary pressure, capillary leakage and consequent oedema as pathogenetic mechanisms. Data on changes in glomerular filtration rate (GFR) at altitudes above 5000 m are very limited. METHODS: Thirty-four healthy mountaineers, who were randomized to two acclimatization protocols, undertook an expedition on Muztagh Ata Mountain (7549 m) in China. Tests were performed at five altitudes: Zurich pre-expedition (PE, 450 m), base camp (BC, 4497 m), Camp 1 (C1, 5533 m), Camp 2 (C2, 6265 m) and Camp 3 (C3, 6865 m). Cystatin C- and creatinine-based (Mayo Clinic quadratic equation) GFR estimates (eGFR) were assessed together with Lake Louise AMS score and other tests. RESULTS: eGFR significantly decreased from PE to BC (P < 0.01). However, when analysing at changes between BC and C3, only cystatin C-based estimates indicated a significant decrease in GFR (P = 0.02). There was a linear decrease in eGFR from PE to C3, with a decrease of approx. 3.1 mL min(-1) 1.73 m(-2) per 1000 m increase in altitude. No differences between eGFR of the two groups with different acclimatization protocols could be observed. There was a significant association between eGFR and haematocrit (P = 0.01), whereas no significant association between eGFR and aldosterone, renin and brain natriuretic peptide could be observed. Finally, higher AMS scores were significantly associated with higher eGFR (P = 0.01). CONCLUSIONS: Renal function declines when ascending from low to high altitude. Cystatin C-based eGFR decreases during ascent in high altitude expedition but increases with AMS scores. For individuals with eGFR <40 mL min(-1) 1.73 m(-2), caution may be necessary when planning trips to high altitude above 4500 m above sea level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND AIMS Hypoxia can induce inflammation in the gastrointestinal tract. However, the impact of hypoxia on the course of inflammatory bowel disease (IBD) is poorly understood. We aimed to evaluate whether flights and/or journeys to regions lying at an altitude of >2000m above the sea level are associated with flare-ups within 4weeks of the trip. METHODS IBD patients with at least one flare-up during a 12-month observation period were compared to a group of patients in remission. Both groups completed a questionnaire. RESULTS A total of 103 IBD patients were included (43 with Crohn's disease (CD): mean age 39.3±14.6years; 60 with ulcerative colitis (UC): mean age 40.4±15.1years). Fifty-two patients with flare-ups were matched to 51 patients in remission. IBD patients experiencing flare-ups had more frequently undertaken flights and/or journeys to regions >2000m above sea level within four weeks of the flare-up when compared to patients in remission (21/52 [40.4%] vs. 8/51 [15.7%], p=0.005). CONCLUSIONS Journeys to high altitude regions and/or flights are a risk factor for IBD flare-ups occurring within 4weeks of travel.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a detailed record of major ions from a 20 in deep firn core from Amundsenisen, western Dronning Maud Land, Antarctica, is presented. The core was drilled at 75degreesS, 2degrees E (2900 m.a.s.l.) during austral summer 1991/92. The following ions were measured at 3 cm resolution: Na+, Mg2+, Ca2+, Cl-, NO3-, SO42- and CH3SO3H (MSA). The core was dated back to 1865 using a combination of chemical records and volcanic reference horizons. The volcanic eruptions identified in this core are Mount Ngauruhoe, New Zealand (1974-75), Mount Agung, Indonesia (1963), Azul, Argentina (1932). and a broad peak that corresponds in time to Tarawera, New Zealand (1886), Falcon Island, South Shetlands, Southern Ocean (1885), and Krakatau, Indonesia (1883). There are no trends in any of the ion records, but the annual to decadal changes are large. The mean concentrations of the measured ions are in agreement with those from other high-altitude cores from the Antarctic plateau. At this core site there may be a correspondence between peaks in the MSA record and major El Nino-Southern Oscillation events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impairment of cognitive performance during and after high-altitude climbing has been described in numerous studies and has mostly been attributed to cerebral hypoxia and resulting functional and structural cerebral alterations. To investigate the hypothesis that high-altitude climbing leads to cognitive impairment, we used of neuropsychological tests and measurements of eye movement (EM) performance during different stimulus conditions. The study was conducted in 32 mountaineers participating in an expedition to Muztagh Ata (7,546 m). Neuropsychological tests comprised figural fluency, line bisection, letter and number cancellation, and a modified pegboard task. Saccadic performance was evaluated under three stimulus conditions with varying degrees of cortical involvement: visually guided pro- and anti-saccades, and visuo-visual interaction. Typical saccade parameters (latency, mean sequence, post-saccadic stability, and error rate) were computed off-line. Measurements were taken at a baseline level of 440 m and at altitudes of 4,497, 5,533, 6,265, and again at 440 m. All subjects reached 5,533 m, and 28 reached 6,265 m. The neuropsychological test results did not reveal any cognitive impairment. Complete eye movement recordings for all stimulus conditions were obtained in 24 subjects at baseline and at least two altitudes and in 10 subjects at baseline and all altitudes. Measurements of saccade performances showed no dependence on any altitude-related parameter and were well within normal limits. Our data indicates that acclimatized climbers do not seem to suffer from significant cognitive deficits during or after climbs to altitudes above 7,500 m. We demonstrated that investigation of EMs is feasible during high-altitude expeditions.